698 research outputs found
A Game-Theoretic Foundation for the Maximum Software Resilience against Dense Errors
Safety-critical systems need to maintain their functionality in the presence of multiple errors caused by component failures or disastrous environment events. We propose a game-theoretic foundation for synthesizing control strategies that maximize the resilience of a software system in defense against a realistic error model. The new control objective of such a game is called -resilience. In order to be -resilient, a system needs to rapidly recover from infinitely many waves of a small number of up to close errors provided that the blocks of up to errors are separated by short time intervals, which can be used by the system to recover. We first argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We then show how the analysis of -resilience problems can be formulated as a model-checking problem of a mild extension to the alternating-time -calculus (AMC). The witness for resilience, which can be provided by the model checker, can be used for providing control strategies that are optimal with respect to resilience. We show that the computational complexity of constructing such optimal control strategies is low and demonstrate the feasibility of our approach through an implementation and experimental results
Persistent clinical efficacy and safety of anti-tumour necrosis factor \textgreeka therapy with infliximab in patients with ankylosing spondylitis over 5 years: evidence for different types of response
Background: There is insufficient evidence for the long-term efficacy and safety of anti-tumour necrosis factor therapy in patients with ankylosing spondylitis (AS). This is the first report on the treatment with infliximab over 5 years.Methods: As part of a multicentre randomised trial, 69 patients with active AS at baseline (BL) have been continuously treated with infliximab (5 mg/kg i.v. every 6 weeks)---except for a short discontinuation after 3 years (FU1). The primary outcome of this extension was remission according to the ASsessment in Ankylosing Spondylitis (ASAS) criteria at the end of year 5 of the study (FU2).Results: Of the 43 patients who completed year 3, 42 agreed to continue, 38 of which (90.5%) finished year 5 (55% of 69 initially). Partial clinical remission was achieved in 13 of 38 patients (34.2%) at FU1 and FU2. At FU2, the mean Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) was 2.5±1.9 (BL:6.4, FU1:2.5). BASDAI values <4 were seen in 79% of patients at both, FU1 and FU2. ASAS 20% and 40% responses were seen in 32 (84%) and 24 (63%) patients at FU2, respectively. Most patients classified as non-responders at FU2 were part-time responders, as all but one patient achieved an ASAS 20% response at least once within the last 2 years. Three types of responders were identified. No major side effects occurred during years 4 and 5 of infliximab therapy.Conclusions: Infliximab is safe and efficacious in AS patients over 5 years. The majority of the patients remained on treatment and had rather persistent levels of low disease activity. Different response types could be identified
New Deterministic Algorithms for Solving Parity Games
We study parity games in which one of the two players controls only a small
number of nodes and the other player controls the other nodes of the
game. Our main result is a fixed-parameter algorithm that solves bipartite
parity games in time , and general parity games in
time , where is the number of distinct
priorities and is the number of edges. For all games with this
improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and
Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved
deterministic algorithm for graphs with small average degree
Structural Synthesis for GXW Specifications
We define the GXW fragment of linear temporal logic (LTL) as the basis for
synthesizing embedded control software for safety-critical applications. Since
GXW includes the use of a weak-until operator we are able to specify a number
of diverse programmable logic control (PLC) problems, which we have compiled
from industrial training sets. For GXW controller specifications, we develop a
novel approach for synthesizing a set of synchronously communicating
actor-based controllers. This synthesis algorithm proceeds by means of
recursing over the structure of GXW specifications, and generates a set of
dedicated and synchronously communicating sub-controllers according to the
formula structure. In a subsequent step, 2QBF constraint solving identifies and
tries to resolve potential conflicts between individual GXW specifications.
This structural approach to GXW synthesis supports traceability between
requirements and the generated control code as mandated by certification
regimes for safety-critical software. Synthesis for GXW specifications is in
PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed
our experimental results suggest that GXW synthesis scales well to
industrial-sized control synthesis problems with 20 input and output ports and
beyond.Comment: The long (including appendix) version being reviewed by CAV'16
program committee. Compared to the submitted version, one author (out of her
wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an
additional remark over environment assumption and easy corner case
Rotational Cooling of Polar Molecules by Stark-tuned Cavity Resonance
A general scheme for rotational cooling of diatomic heteronuclear molecules
is proposed. It uses a superconducting microwave cavity to enhance the
spontaneous decay via Purcell effect. Rotational cooling can be induced by
sequentially tuning each rotational transition to cavity resonance, starting
from the highest transition level to the lowest using an electric field.
Electrostatic multipoles can be used to provide large confinement volume with
essentially homogeneous background electric field.Comment: 10 pages, 6 figure
Local Strategy Improvement for Parity Game Solving
The problem of solving a parity game is at the core of many problems in model
checking, satisfiability checking and program synthesis. Some of the best
algorithms for solving parity game are strategy improvement algorithms. These
are global in nature since they require the entire parity game to be present at
the beginning. This is a distinct disadvantage because in many applications one
only needs to know which winning region a particular node belongs to, and a
witnessing winning strategy may cover only a fractional part of the entire game
graph.
We present a local strategy improvement algorithm which explores the game
graph on-the-fly whilst performing the improvement steps. We also compare it
empirically with existing global strategy improvement algorithms and the
currently only other local algorithm for solving parity games. It turns out
that local strategy improvement can outperform these others by several orders
of magnitude
Multi-Player and Multi-Choice Quantum Game
We investigate a multi-player and multi-choice quantum game. We start from
two-player and two-choice game and the result is better than its classical
version. Then we extend it to N-player and N-choice cases. In the quantum
domain, we provide a strategy with which players can always avoid the worst
outcome. Also, by changing the value of the parameter of the initial state, the
probabilities for players to obtain the best payoff will be much higher that in
its classical version.Comment: 4 pages, 1 figur
- …