43 research outputs found

    A comparison of Northeast Atlantic killer whale (Orcinus orca) stereotyped call repertoires

    Get PDF
    Funding for data collection was provided by the BBC Natural History Unit, Fundação para a Ciência e a Tecnologia (grant number SFRH/BD/30303/2006), the Icelandic Research Fund (i. Rannsóknasjóður) through a START Postdoctoral Fellowship (grant number 120248042) and a Project Grant (grant number 163060‐051), the National Geographic Global Exploration Fund (grant number GEFNE65‐12), a Marie Curie International Incoming Fellowship (project number 297116), the Office of Naval Research (grant number N00014‐08‐1‐0984), and a Russell Trust Award from the University of St. Andrews.Killer whale call repertoires can provide information on social connections among groups and populations. Killer whales in Iceland and Norway exhibit similar ecology and behavior, are genetically related, and are presumed to have been in contact before the collapse of the Atlanto-Scandian herring stock in the 1960s. However, photo-identification suggests no recent movements between Iceland and Norway but regular movement between Iceland and Shetland. Acoustic recordings collected between 2005 and 2016 in Iceland, Norway, and Shetland were used to undertake a comprehensive comparison of call repertoires of Northeast Atlantic killer whales. Measurements of time and frequency parameters of calls from Iceland (n = 4,037) and Norway (n = 1,715) largely overlapped in distribution, and a discriminant function analysis had low correct classification rate. No call type matches were confirmed between Iceland and Norway or Shetland and Norway. Three call types matched between Iceland and Shetland. Therefore, this study suggests overall similarities in time and frequency parameters but some divergence in call type repertoires. This argues against presumed past contact between Icelandic and Norwegian killer whales and suggests that they may not have been one completely mixed population.PostprintPeer reviewe

    Comparison of estimated 20-Hz pulse fin whale source levels from the tropical Pacific and Eastern North Atlantic Oceans to other recorded populations

    Get PDF
    D.H. was funded by the Office of Naval Research (Award: N00014-16-1-2364). J.M.O. was funded under Award: N00014-16-1-2860 also from the Office of Naval Research.Passive acoustic monitoring, mitigation, animal density estimation, and comprehensive understanding of the impact of sound on marine animals all require accurate information on vocalization source level to be most effective. This study focused on examining the uncertainty related to passive sonar equation terms that ultimately contribute to the variability observed in estimated source levels of fin whale calls. Differences in hardware configuration, signal detection methods, sample size, location, and time were considered in interpreting the variability of estimated fin whale source levels. Data from Wake Island in the Pacific Ocean and off Portugal in the Atlantic Ocean provided the opportunity to generate large datasets of estimated source levels to better understand sources of uncertainty leading to the observed variability with and across years. Average seasonal source levels from the Wake Island dataset ranged from 175 to 188 dB re 1 μPa m, while the 2007–2008 seasonal average detected off Portugal was 189 dB re 1 μPa m. Owing to the large inherent variability within and across this and other studies that potentially masks true differences between populations, there is no evidence to conclude that the source level of 20-Hz fin whale calls are regionally or population specific.Publisher PDFPeer reviewe

    Low-frequency components in harbor porpoise (Phocoena phocoena) clicks : communication signal, by-products, or artifacts?

    Get PDF
    Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 4059-4068, doi:10.1121/1.2945154.Underwater sound signals for biosonar and communication normally have different source properties to serve the purposes of generating efficient acoustic backscatter from small objects or conveying information to conspecifics. Harbor porpoises (Phocoena phocoena) are nonwhistling toothed whales that produce directional, narrowband, high-frequency (HF) echolocation clicks. This study tests the hypothesis that their 130 kHz HF clicks also contain a low-frequency (LF) component more suited for communication. Clicks from three captive porpoises were analyzed to quantify the LF and HF source properties. The LF component is 59 (S.E.M=1.45 dB) dB lower than the HF component recorded on axis, and even at extreme off-axis angles of up to 135°, the HF component is 9 dB higher than the LF component. Consequently, the active space of the HF component will always be larger than that of the LF component. It is concluded that the LF component is a by-product of the sound generator rather than a dedicated pulse produced to serve communication purposes. It is demonstrated that distortion and clipping in analog tape recorders can explain some of the prominent LF components reported in earlier studies, emphasizing the risk of erroneous classification of sound types based on recording artifacts.This work was supported by the Carlsberg Foundation and Oticon, and via a Steno Scholarship from the Danish Natural Science Research Council to PTM

    Behavioral context of echolocation and prey-handling sounds produced by killer whales (Orcinus orca) during pursuit and capture of Pacific salmon (Oncorhynchus spp.).

    Get PDF
    Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements

    Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations

    Get PDF
    Author Posting. © The Author, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 192 (2006): 449-459, doi:10.1007/s00359-005-0085-2.Signal source intensity and detection range, which integrates source intensity with propagation loss, background noise and receiver hearing abilities, are important characteristics of communication signals. Apparent source levels were calculated for 819 pulsed calls and 24 whistles produced by free-ranging resident killer whales by triangulating the angles-of-arrival of sounds on two beamforming arrays towed in series. Levels in the 1-20 kHz band ranged from 131-168 dB re 1μPa @1m, with differences in the means of different sound classes (whistles: 140.2 ± 4.1 dB; variable calls: 146.6 ± 6.6 dB; stereotyped calls: 152.6 ± 5.9 dB), and among stereotyped call types. Repertoire diversity carried through to estimates of active space, with “long-range” stereotyped calls all containing overlapping, independently-modulated high-frequency components (mean estimated active space of 10-16km in sea state zero) and “short-range” sounds (5-9 km) included all stereotyped calls without a high-frequency component, whistles, and variable calls. Short-range sounds are reported to be more common during social and resting behaviors, while long-range stereotyped calls predominate in dispersed travel and foraging behaviors. These results suggest that variability in sound pressure levels may reflect diverse social and ecological functions of the acoustic repertoire of killer whales.Funding was provided by WHOI’s Ocean Ventures Fund and Rinehart Coastal Research Center and a Royal Society fellowship

    Pulsed sounds of the porpoise Lagenorhynchus australis

    No full text
    Volume: 366Start Page: 1End Page: 1

    Townsend\u27s unmapped North Atlantic right whales (Eubalaena glacialis)

    No full text
    Volume: 476Start Page: 1End Page:

    Intense low-frequency sounds from an antarctic minke whale, Balaenoptera acutorostrata

    No full text
    Volume: 388Start Page: 1End Page:
    corecore