23 research outputs found
Yield and carcass composition of broilers fed with diets based on the concept of crude protein or ideal protein
Two experiments were conducted to evaluate the effect of diets formulated using the criteria of crude protein (CP) and ideal protein (IP) on the yield and carcass composition of male and female broilers. Birds of two broilers strains (Hybro G and Hybro PG) were reared from 1 to 42 days of age during the summer, with average temperatures of 26°C. A completely randomized experimental design was used in a 2 x 2 factorial arrangement, with 6 replicates and 20 birds per pen. On day 42, four birds from each experimental unit were killed and carcass yield and composition were determined. Breast yield was higher in males and females fed the IP-based diet than in birds fed the CP-based diet. Abdominal fat pad and carcass crude protein were statistically similar between the two protein criteria and between strains. Carcass amino acid levels evidenced higher levels of Met, Lys, Met+Cys and Thr in the males fed IP-based diets. No differences were seen between the two criteria for the females. Diets formulated according to IP resulted in better carcass and breast yield, both for males and females
Recommended from our members
Stepwise self-assembly of a tripeptide from molecular dimers to supramolecular beta-sheets in crystals and amyloid-like fibrils in the solid state
The terminally protected tripeptide Boc-Ala(1)-Leu(2)-Ala(3)-OMe 1 forms antiparallel hydrogen-bonded dimers of two different conformers in the asymmetric unit and the individual dimers then self-associate to form supramolecular beta-sheet structures in crystals and amyloid-like fibrils in the solid state
Effects of dietary digestible lysine levels on protein and fat deposition in the carcass of broilers
EFFECT OF TWO CHEMOTYPES OF OREGANO ESSENTIAL OIL ON BROILER PERFORMANCE, NUTRIENT BALANCE, AND LIPID PEROXIDATION OF BREAST MEAT DURING STORAGE
Structural basis for ligand recognition by a Cache chemosensory domain that mediates carboxylate sensing in Pseudomonas syringae
Chemoreceptors enable bacteria to detect chemical signals in the environment and navigate towards niches that are favourable for survival. The sensor domains of chemoreceptors function as the input modules for chemotaxis systems, and provide sensory specificity by binding specific ligands. Cache-like domains are the most common extracellular sensor module in prokaryotes, however only a handful have been functionally or structurally characterised. Here, we have characterised a chemoreceptor Cache-like sensor domain (PscD-SD) from the plant pathogen Pseudomonas syringae pv. actinidiae (Psa). High-throughput fluorescence thermal shift assays, combined with isothermal thermal titration calorimetry, revealed that PscD-SD binds specifically to C(2) (glycolate and acetate) and C(3) (propionate and pyruvate) carboxylates. We solved the structure of PscD-SD in complex with propionate using X-ray crystallography. The structure reveals the key residues that comprise the ligand binding pocket and dictate the specificity of this sensor domain for C(2) and C(3) carboxylates. We also demonstrate that all four carboxylate ligands are chemoattractants for Psa, but only two of these (acetate and pyruvate) are utilisable carbon sources. This result suggests that in addition to guiding the bacteria towards nutrients, another possible role for carboxylate sensing is in locating potential sites of entry into the host plant
Are carcass and meat quality of male dual-purpose chickens competitive compared to slow-growing broilers reared under a welfare-enhanced organic system?
Removal of H2Aub1 by ubiquitin-specific proteases 12 and 13 is required for stable Polycomb-mediated gene repression in Arabidopsis
Skeletal Muscle Characterization of Japanese Quail Line Selectively Bred for Lower Body Weight as an Avian Model of Delayed Muscle Growth with Hypoplasia
This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth
