1,228 research outputs found
Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B
Aerosol associated soluble ions and the radionuclide tracers 7Be and 210Pb were quantified in 414 filter samples collected in spring 2001 from the DC-8 during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. Binning the data into near Asia (flights from Hong Kong and Japan) and remote Pacific (all other flights) revealed large enhancements of NO3â, SO4=, C2O4=, NH4+, K+, Mg2+, and Ca2+ near Asia. The boundary layer and lower troposphere were most strongly influenced by continental outflow, and the largest enhancements were seen in Ca2+ (a dust tracer) and NO3â (reflecting uptake of HNO3 onto the dust). Comparing the TRACE P near Asia bin with earlier results from the same region during PEM-West B (in 1994) shows at least twofold enhancements during TRACE P in most of the ions listed above. Calcium and NO3â were most enhanced in this comparison as well (more than sevenfold higher in the boundary layer and threefold higher in the lower troposphere). Independent estimation of Asian emissions of gaseous precursors of the aerosol-associated ions suggest only small changes between the two missions, and precipitation fields do not suggest any significant difference in the efficiency of the primary sink, precipitation scavenging. It thus appears that with the possible exception of dust, the enhancements of aerosol-associated species during TRACE P cannot be explained by stronger sources or weaker sinks. We argue that the enhancements largely reflect the fact that TRACE P focused on characterizing Asian outflow, and thus the DC-8 was more frequently flown into regions that were influenced by well-organized flow off the continent
Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature
We prove convergence results for expanding curvature flows in the Euclidean
and hyperbolic space. The flow speeds have the form , where and
is a positive, strictly monotone and 1-homogeneous curvature function. In
particular this class includes the mean curvature . We prove that a
certain initial pinching condition is preserved and the properly rescaled
hypersurfaces converge smoothly to the unit sphere. We show that an example due
to Andrews-McCoy-Zheng can be used to construct strictly convex initial
hypersurfaces, for which the inverse mean curvature flow to the power
loses convexity, justifying the necessity to impose a certain pinching
condition on the initial hypersurface.Comment: 18 pages. We included an example for the loss of convexity and
pinching. In the third version we dropped the concavity assumption on F.
Comments are welcom
The Sunyaev-Zel'dovich Effect by Cocoons of Radio Galaxies
We estimate the deformation of the cosmic microwave background radiation by
the hot region (``cocoon'') around a radio galaxy. A simple model is adopted
for cocoon evolution while the jet is on, and a model of evolution is
constructed after the jet is off. It is found that at low redshift the phase
after the jet is off is longer than the lifetime of the jets. The Compton
y-parameter generated by cocoons is calculated with a Press-Schechter number
density evolution. The resultant value of y is of the same order as the COBE
constraint. The Sunyaev-Zeldovich effect due to cocoons could therefore be a
significant foreground source of small angular scale anisotropies in the cosmic
microwave background radiation.Comment: Published version, 23 pages with 5 figure
Discovery of a Classic FR-II Broad Absorption Line Quasar from the FIRST Survey
We have discovered a remarkable quasar, FIRST J101614.3+520916, whose optical
spectrum shows unambiguous broad absorption features while its double-lobed
radio morphology and luminosity clearly indicate a classic Fanaroff-Riley Type
II radio source. Its radio luminosity places it at the extreme of the recently
established class of radio-loud broad absorption line quasars (Becker et al.
1997, 2000; Brotherton et al. 1998). Because of its hybrid nature, we speculate
that FIRST J101614.3+520916 is a typical FR-II quasar which has been
rejuvenated as a broad absorption line (BAL) quasar with a Compact Steep
Spectrum core. The direction of the jet axis of FIRST J101614.3+520916 can be
estimated from its radio structure and optical brightness, indicating that we
are viewing the system at a viewing angle of > 40 degrees. The position angles
of the radio jet and optical polarization are not well-aligned, differing by 20
to 30 degrees. When combined with the evidence presented by Becker et al.
(2000) for a sample of 29 BAL quasars showing that at least some BAL quasars
are viewed along the jet axis, the implication is that no preferred viewing
orientation is necessary to observe BAL systems in a quasar's spectrum. This,
and the probable young nature of compact steep spectrum sources, leads
naturally to the alternate hypothesis that BALs are an early stage in the lives
of quasars.Comment: 14 pages, 6 postscript figures; accepted for publication in the
Astrophysical Journa
Shocks and sonic booms in the intracluster medium: X-ray shells and radio galaxy activity
Motivated by hydrodynamic simulations, we discuss the X-ray appearance of
radio galaxies embedded in the intracluster medium (ICM) of a galaxy cluster.
We distinguish three regimes. In the early life of a powerful source, the
entire radio cocoon is expanding supersonically and hence drives a strong shock
into the ICM. Eventually, the sides of the cocoon become subsonic and the ICM
is disturbed by the sonic booms of the jet's working surface. In both of these
regimes, X-ray observations would find an X-ray shell. In the strong shock
regime, this shell will be hot and relatively thin. However, in the weak shock
(sonic-boom) regime, the shell will be approximately the same temperature as
the undisturbed ICM. If a cooling flow is present, the observed shell may even
be cooler than the undisturbed ICM due to the lifting of cooler material into
the shell from the inner (cooler) regions of the cluster. In the third and
final regime, the cocoon has collapsed and no well-defined X-ray shell will be
seen. We discuss ways of estimating the power and age of the source once its
regime of behavior has been determined.Comment: 4 pages, submitted for publication in Astrophysical Journal. Full
paper (including figure) can be obtained from
http://rocinante.Colorado.EDU/~chris/papers/xray_hydro.p
Recommended from our members
Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime
This paper describes the large-scale distributions of HNO3, HCOOH, and CH3COOH over the central and South Pacific basins during the Pacific Exploratory Mission-Tropics (PEM-Tropics) in austral springtime. Because of the remoteness of this region from continental areas, low part per trillion by volume (pptv) mixing ratios of acidic gases were anticipated to be pervasive over the South Pacific basin. However, at altitudes of 2â12 km over the South Pacific, air parcels were encountered frequently with significantly enhanced mixing ratios (up to 1200 pptv) of acidic gases. Most of these air parcels were centered in the 3â7 km altitude range and occurred within the 15°â65°S latitudinal band. The acidic gases exhibited an overall general correlation with CH3Cl, PAN, and O3, suggestive of photochemical and biomass burning sources. There was no correlation or trend of acidic gases with common industrial tracer compounds (e.g., C2Cl4 or CH3CCl3). The combustion emissions sampled over the South Pacific basin were relatively aged exhibiting C2H2/CO ratios in the range of 0.2â2.2 pptv/ppbv. The relationships between acidic gases and this ratio were similar to what was observed in aged air parcels (i.e., \u3e3â5 days since they were over a continental area) over the western North Pacific during the Pacific Exploratory Mission-West Phases A and B (PEM-West A and B). In the South Pacific marine boundary layer a median C2H2/CO ratio of 0.6 suggested that this region was generally not influenced by direct inputs of biomass combustion emissions. Here we observed the lowest mixing ratios of acidic gases, with median values of 14 pptv for HNO3, 19 pptv for HCOOH, and 18 pptv for CH3COOH. These values were coincident with low mixing ratios of NOx(\u3c10 pptv), CO (â50 parts per billion by volume (ppbv)), O3 (\u3c 20 ppbv), and long-lived hydrocarbons (e.g., C2H6 \u3c300 pptv). Overall, the PEM-Tropics data suggest an important influence of aged biomass combustion emissions on the distributions of acidic gases over the South Pacific basin in austral springtime
Chemical and physical properties of bulk aerosols within four sectors observed during TRACE-P
Chemical and physical aerosol data collected on the DC-8 during TRACE-P were grouped into four sectors based on back trajectories. The four sectors represent long-range transport from the west (WSW), regional circulation over the western Pacific and Southeast Asia (SE Asia), polluted transport from northern Asia with substantial sea salt at low altitudes (NNW) and a substantial amount of dust (Channel). WSW has generally low mixing ratios at both middle and high altitudes, with the bulk of the aerosol mass due to non-sea-salt water-soluble inorganic species. Low altitude SE Asia also has low mean mixing ratios in general, with the majority of the aerosol mass comprised of non-sea-salts, however, soot is also relatively important in this region. NNW had the highest mean sea salt mixing ratios, with the aerosol mass at low altitudes (\u3c2 km) evenly divided between sea salts, non-sea-salts, and dust. The highest mean mixing ratios of water-soluble ions and soot were observed at the lowest altitudes (\u3c2 km) in the Channel sector. The bulk of the aerosol mass exported from Asia emanates from Channel at both low and midaltitudes, due to the prevalence of dust compared to other sectors. Number densities show enhanced fine particles for Channel and NNW, while their volume distributions are enhanced due to sea salt and dust. Low-altitude Channel exhibits the highest condensation nuclei (CN) number densities along with enhanced scattering coefficients, compared to the other sectors. At midaltitudes (2â7 km), low mean CN number densities coupled with a high proportion of nonvolatile particles (â„65%) observed in polluted sectors (Channel and NNW) are attributed to wet scavenging which removes hygroscopic CN particles. Low single scatter albedo in SE Asia reflects enhanced soot
Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia
As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30â40%
Obscuration of the Parsec Scale Jets in the Compact Symmetric Object 1946+708
We present results of VLA and VLBA observations of the 1.420 GHz neutral
hydrogen absorption associated with the Compact Symmetric Object 1946+708
(z=0.101). We find significant structure in the gas on parsec scales. The peak
column density in the HI (N_HI~2.2x10^23 cm^-2 (T_s/8000K)) occurs toward the
center of activity of the source, as does the highest velocity dispersion
(FWHM~350 \kms). In addition, we find that the continuum spectra of the various
radio components associated with these jets strongly indicate free-free
absorption. This effect is particularly pronounced toward the core and inner
components of the receding jet, suggesting the presence of a screen local to
the source, perhaps part of an obscuring torus.Comment: revised version, some text added, 1 figure changed; accepted to
Astrophysical Journal, 22 page LaTeX document includes 8 postscript figure
- âŠ