12 research outputs found

    c-Jun Regulates Eyelid Closure and Skin Tumor Development through EGFR Signaling

    Get PDF
    AbstractTo investigate the function of c-Jun during skin development and skin tumor formation, we conditionally inactivated c-jun in the epidermis. Mice lacking c-jun in keratinocytes (c-junΔep) develop normal skin but express reduced levels of EGFR in the eyelids, leading to open eyes at birth, as observed in EGFR null mice. Primary keratinocytes from c-junΔep mice proliferate poorly, show increased differentiation, and form prominent cortical actin bundles, most likely because of decreased expression of EGFR and its ligand HB-EGF. In the absence of c-Jun, tumor-prone K5-SOS-F transgenic mice develop smaller papillomas, with reduced expression of EGFR in basal keratinocytes. Thus, using three experimental systems, we show that EGFR and HB-EGF are regulated by c-Jun, which controls eyelid development, keratinocyte proliferation, and skin tumor formation

    Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation

    No full text
    JNK proteins have been shown to be involved in liver carcinogenesis in mice, but the extent of their involvement in the development of human liver cancers is unknown. Here, we show that activation of JNK1 but not JNK2 was increased in human primary hepatocellular carcinomas (HCCs). Further, JNK1 was required for human HCC cell proliferation in vitro and tumorigenesis after xenotransplantation. Importantly, mice lacking JNK1 displayed decreased tumor cell proliferation in a mouse model of liver carcinogenesis and decreased hepatocyte proliferation in a mouse model of liver regeneration. In both cases, impaired proliferation was caused by increased expression of p21, a cell-cycle inhibitor, and reduced expression of c-Myc, a negative regulator of p21. Genetic inactivation of p21 in JNK1–/– mice restored hepatocyte proliferation in models of both liver carcinogenesis and liver regeneration, and overexpression of c-Myc increased proliferation of JNK1–/– liver cells. Similarly, JNK1 was found to control the proliferation of human HCC cells by affecting p21 and c-Myc expression. Pharmacologic inhibition of JNK reduced the growth of both xenografted human HCC cells and chemically induced mouse liver cancers. These findings provide a mechanistic link between JNK activity and liver cell proliferation via p21 and c-Myc and suggest JNK targeting can be considered as a new therapeutic approach for HCC treatment

    TNFα shedding and epidermal inflammation are controlled by Jun proteins

    No full text
    Inducible epidermal deletion of JunB and c-Jun in adult mice causes a psoriasis-like inflammatory skin disease. Increased levels of the proinflammatory cytokine TNFα play a major role in this phenotype. Here we define the underlying molecular mechanism using genetic mouse models. We show that Jun proteins control TNFα shedding in the epidermis by direct transcriptional activation of tissue inhibitor of metalloproteinase-3 (TIMP-3), an inhibitor of the TNFα-converting enzyme (TACE). TIMP-3 is down-regulated and TACE activity is specifically increased, leading to massive, cell-autonomous TNFα shedding upon loss of both JunB and c-Jun. Consequently, a prominent TNFα-dependent cytokine cascade is initiated in the epidermis, inducing severe skin inflammation and perinatal death of newborns from exhaustion of energy reservoirs such as glycogen and lipids. Importantly, this metabolic “cachectic” phenotype can be genetically rescued in a TNFR1-deficient background or by epidermis-specific re-expression of TIMP-3. These findings reveal that Jun proteins are essential physiological regulators of TNFα shedding by controlling the TIMP-3/TACE pathway. This novel mechanism describing how Jun proteins control skin inflammation offers potential targets for the treatment of skin pathologies associated with increased TNFα levels

    Ferdinand A. Hermens und die Formel der Demokratie

    No full text
    corecore