11 research outputs found

    Adaptable antigen matrix platforms for peptide vaccination strategies and T cell-mediated anti-tumor immunity

    Get PDF
    Injection of antigenic peptides has been widely used as a vaccine strategy to boost T cell immunity. However, the poor immunogenicity of single peptides can potentially be strengthened through modification of the tertiary structure and the selection of the accompanying adjuvant. Here, we generated antigenic peptides into non-linear trimers by solid phase peptide synthesis, thereby enhancing antigen presentation by dendritic cells to CD8+ T cells in vitro and in vivo. CD8+ T cells from mice vaccinated with trimers showed an KLRG1+ effector phenotype and were able to recognize and kill antigen-expressing tumor cells ex vivo. Importantly, trimers outperformed synthetic long peptide in terms of T cell response even when equal number of epitopes were used for immunization. To improve the synthesis of trimers containing difficult peptide sequences, we developed a novel small molecule that functions as conjugation platform for synthetic long peptides. This platform, termed Antigen MAtriX (AMAX) improved yield, purity and solubility of trimers over conventional solid phase synthesis strategies. AMAX outperformed synthetic long peptides in terms of both CD8+ and CD4+ T cell responses and allowed functionalization with DC-SIGN-binding carbohydrates for in vivo dendritic cell targeting strategies, boosting T cell responses even further. Moreover, we show that ag

    Neuroinflammation: microglia and T cells get ready to tango

    No full text
    In recent years, many paradigms concerning central nervous system (CNS) immunology have been challenged and shifted, including the discovery of CNS-draining lymphatic vessels, the origin and functional diversity of microglia, the impact of T cells on CNS immunological homeostasis and the role of neuroinflammation in neurodegenerative diseases. In parallel, antigen presentation outside the CNS has revealed the vital role of antigen-presenting cells in maintaining tolerance toward self-proteins, thwarting auto-immunity. Here, we review recent findings that unite these shifted paradigms of microglial functioning, antigen presentation, and CNS-directed T cell activation, focusing on common neurodegenerative diseases. It provides an important update on CNS adaptive immunity, novel targets, and a concept of the microglia T-cell equilibrium

    Immunological dynamics after subcutaneous immunization with a squalene-based oil-in-water adjuvant

    No full text
    The clinically successful adjuvant MF59 is used in seasonal influenza vaccines, which is proposed to enhance immunity by creating an immune-competent microenvironment in the muscle that allows recruitment of immune cells that drive adaptive immune responses. Here, we examined whether the clinically successful adjuvants MF59/AddaVax could be used for subcutaneous use and how antigen delivery can be synergized with cellular dynamics at the vaccination site. Subcutaneous injection of AddaVax leads to thickening of the skin, characterized by a neutrophil-monocyte recruitment sequence. Skin-infiltrating CCR2+Ly6Chigh monocytes showed differentiation to CD11b+Ly6C+MHCII+CD11c+CD64+ monocyte-derived DCs over time in the hypodermal layers of the skin, expressing high levels of CD209a/mDC-SIGN. Surprisingly, skin thickening was accompanied with increased white adipose tissue highly enriched with monocytes. Analysis of the skin-draining lymph nodes revealed early increases in neutrophils and moDCs at 12 hours after injection and later increases in migratory cDC2s. Subcutaneous vaccination with AddaVax enhanced antigen-specific CD8+ and CD4+ T cell responses, while moDC targeting using antigen-coupled CD209a antibody additionally boosted humoral responses. Hence, oil-in-water emulsions provide an attractive immune modulatory adjuvants aimed at increasing cellular responses, as well as antibody responses when combined with moDC targeting

    Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy

    No full text
    Background PD1 immune checkpoint blockade (αPD1 ICB) has shown unparalleled success in treating many types of cancer. However, response to treatment does not always lead to tumor rejection. While αPD1 ICB relies on cytotoxic CD8 + T cells, antigen-presenting cells (APCs) at the tumor site are also needed for costimulation of tumor-infiltrating lymphocytes (TILs). It is still unclear how these APCs develop and function before and during αPD1 ICB or how they are associated with tumor rejection. Methods Here, we used B16 mouse melanoma and MC38 colorectal carcinoma tumor models, which show differential responses to αPD1 ICB. The immune composition of ICB insensitive B16 and sensitive MC38 were extensively investigated using multi-parameter flow cytometry and unsupervised clustering and trajectory analyses. We additionally analyzed existing single cell RNA sequencing data of the myeloid compartment of patients with melanoma undergoing αPD1 ICB. Lastly, we investigated the effect of CD40 agonistic antibody on the tumor-infiltrating monocyte-derived cells during αPD1 ICB. Results We show that monocyte-derived dendritic cells (moDCs) express high levels of costimulatory molecules and are correlated with effector TILs in the tumor microenvironment (TME) after αPD1 ICB only in responding mouse tumor models. Tumor-resident moDCs showed distinct differentiation from monocytes in both mouse and human tumors. We further confirmed significant enrichment of tumor-resident differentiated moDCs in patients with melanoma responding to αPD1 ICB therapy compared with non-responding patients. Moreover, moDCs could be targeted by agonistic anti-CD40 antibody, supporting moDC differentiation, effector T-cell expansion and anti-tumor immunity. Conclusion The combined analysis of myeloid and lymphoid populations in the TME during successful and non-successful PD1 ICB led to the discovery of monocyte-to-DC differentiation linked to expanding T-cell populations. This differentiation was found in patients during ICB, which was significantly higher during successful ICB. The finding of tumor-infiltrating monocytes and differentiating moDCs as druggable target for rational combination therapy opens new avenues of anti-tumor therapy design

    Myeloid-specific acly deletion alters macrophage phenotype in vitro and in vivo without affecting tumor growth

    No full text
    Cancer cells rely on ATP-citrate lyase (Acly)-derived acetyl-CoA for lipid biogenesis and proliferation, marking Acly as a promising therapeutic target. However, inhibitors may have side effects on tumor-associated macrophages (TAMs). TAMs are innate immune cells abundant in the tumor microenvironment (TME) and play central roles in tumorigenesis, progression and therapy response. Since macrophage Acly deletion was previously shown to elicit macrophages with increased pro-and decreased anti-inflammatory responses in vitro, we hypothesized that Acly targeting may elicit anti-tumor responses in macrophages, whilst inhibiting cancer cell proliferation. Here, we used a myeloid-specific knockout model to validate that absence of Acly decreases IL-4-induced macrophage activation. Using two distinct tumor models, we demonstrate that Acly deletion slightly alters tumor immune composition and TAM phenotype in a tumor type-dependent manner without affecting tumor growth. Together, our results indicate that targeting Acly in macrophages does not have detrimental effects on myeloid cells

    Outer membrane vesicles engineered to express membrane-bound antigen program dendritic cells for cross-presentation to CD8 + T cells

    No full text
    Outer membrane vesicles (OMVs) are vesicular nano-particles produced by Gram-negative bacteria that are recently being explored as vaccine vector. The fact that OMVs can be efficiently produced by a hypervesiculating Salmonella typhimurium strain, are packed with naturally-occurring adjuvants like lipopolysaccharides (LPS), and can be engineered to express any antigen of choice, makes them ideal candidates for vaccinology. However, it is unclear whether OMVs induce dendritic cell (DC)-mediated antigen-specific T cell responses and how immune activation is coordinated. Here, we show that OMVs induce maturation of human monocyte-derived DCs, murine bone marrow-derived DCs and CD11c+ splenic DCs. OMV-induced DC maturation was dependent on the presence of LPS and the myeloid differentiation primary response 88 (MyD88) adapter protein downstream of toll-like receptor signaling. Importantly, OMVs did not induce pyroptosis/cell death, but instead provided a significant survival benefit in DCs over non-stimulated DCs. OMVs displaying a sizeable ovalbumin fragment at the vesicle surface induce potent cross-presentation in BMDCs and splenic CD11c + DCs to OTI CD8 + T cells, dependent on MyD88. Interestingly, the OMV-induced preference to cross-presentation was only partly dependent on the BATF3-dependent CD8a + professional cross-presenting DC subset. Hence, an OMV-specific programming of DCs that induces maturation and provides a survival benefit for antigen presentation to T cells is identified. Additionally, for the first time, antigen-specific and potent cross-presentation of antigen-loaded OMVs to CD8 + T cells is demonstrated. These data provide mechanistical insight into the processes needed for the DC-mediated cross-presentation of OMV-derived antigens to CD8 + T cells with implications for therapeutic strategies. Statement of Significance: Bacteria are primarily known to cause disease. However, recent research has focused on using engineered bacteria and its byproducts as vaccine agents. In particular, outer membrane vesicles (OMVs) have shown promise in eliciting potent immunity against a variety of pathogens. While most vaccines rely on the generation of antibodies, the control of viral replication and tumor growth is driven by cytotoxic CD8 + T cells induced by dendritic cells (DCs). As such, there is a dire need for vaccines that use DCs to elicit CD8 + T cell responses. Studying OMVs as engineered biomaterial and its interaction with DCs allows tailored induction of immunity. This study includes important findings on OMV-dendritic cell interactions and for the first time supports OMVs as vehicles for the induction of antigen-specific CD8 + T cell responses. Additionally, important mechanistical insight into the molecular pathways needed for the cross-presentation of OMV-derived antigens to CD8 + T cells is provided

    Palmitoylated antigens for the induction of anti-tumor CD8+ T cells and enhanced tumor recognition

    No full text
    Induction of tumor-specific cytotoxic CD8+ T cells (CTLs) via immunization relies on the presentation of tumor-associated peptides in major histocompatibility complex (MHC) class I molecules by dendritic cells (DCs). To achieve presentation of exogenous peptides into MHC class I, cytosolic processing and cross-presentation are required. Vaccination strategies aiming to induce tumor-specific CD8+ T cells via this exogenous route therefore pose a challenge. In this study, we describe improved CD8+ T cell induction and in vivo tumor suppression of mono-palmitic acid-modified (C16:0) antigenic peptides, which can be attributed to their unique processing route, efficient receptor-independent integration within lipid bilayers, and continuous intracellular accumulation and presentation through MHC class I. We propose that this membrane-integrating feature of palmitoylated peptides can be exploited as a tool for quick and efficient antigen enrichment and MHC class I loading. Importantly, both DCs and non-professional antigen-presenting cells (APCs), similar to tumor cells, facilitate anti-tumor immunity by efficient CTL priming via DCs and effective recognition of tumors through enhanced presentation of antigens

    A complement atlas identifies interleukin-6–dependent alternative pathway dysregulation as a key druggable feature of COVID-19

    No full text
    Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.</p
    corecore