28 research outputs found

    Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors

    Get PDF
    Point defects in two semiconductor materials, both with promising optical properties, are investigated. The first material, CdSiP2, is a nonlinear optical material in which absorption bands due to point defects can hinder performance when used in frequency conversion applications in the infrared. The second material, Sn2P2S6, is a photorefractive material where point defects with specific properties are needed to optimize response in dynamic holography applications. Electron paramagnetic resonance (EPR) spectroscopy is used to identify the electronic structure of defects and their charge states. Correlations between EPR spectra and optical absorption allow assignments for the primary absorption bands in CdSiP2. This research established that singly ionized silicon vacancies in CdSiP2 (VSi-) are responsible for three unwanted absorption bands peaking near 800 nm, 1.0 μm, and 1.9 μm. Two new acceptor defects were identified in CdSiP2: the neutral silicon-on-phosphorus antisite (SiP0) and the neutral copper-on-cadmium (CuCd0). These defects are associated with two additional broad photoinduced optical absorption bands appearing at 0.8 μm and 1.4 μm. A series of new point defects have been identified in tellurium-doped Sn2P2S6 crystals using EPR. An iodine ion on a phosphorous site and a tellurium ion on a Sn site are trapped-electron centers. Five trapped-hole centers involve Te ions replacing sulfur ions. The g-matrix has been determined for each of the new paramagnetic defects in Sn2P2S6 and models are assigned

    Electron Paramagnetic Resonance Study of Neutral Mg Acceptors in β-Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e Crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors (Mg0Ga) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors (Mg−Ga). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These Mg0Ga acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. TheMg0Ga acceptors thermally convert back to their nonparamagnetic Mg−Ga charge state when the temperature of the crystal is raised above approximately 250 K

    Electron Paramagnetic Resonance and Optical Absorption Study of Acceptors in CdSiP\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    Cadmium silicon diphosphide (CdSiP2) is a nonlinear material often used in optical parametric oscillators (OPOs) to produce tunable laser output in the mid-infrared. Absorption bands associated with donors and acceptors may overlap the pump wavelength and adversely affect the performance of these OPOs. In the present investigation, electron paramagnetic resonance (EPR) is used to identify two unintentionally present acceptors in large CdSiP2 crystals. These are an intrinsic silicon-on-phosphorus antisite and a copper impurity substituting for cadmium. When exposed to 633 µm laser light at temperatures near or below 80 K, they convert to their neutral paramagnetic charge states (Si0P and Cu0Cd) and can be monitored with EPR. The corresponding donor serving as the electron trap is the silicon-on-cadmium antisite (Si2+Cd before illumination and Si+Cd after illumination). Removing the 633 µm light and warming the crystal above 90 K quickly destroys the EPR signals from both acceptors and the associated donor. Broad optical absorption bands peaking near 0.8 and 1.4 μm are also produced at low temperature by the 633 µm light. These absorption bands are associated with the Si0P and Cu0Cd acceptors

    Defect-related Optical Absorption Bands in CdSiP\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    When used as optical parametric oscillators, CdSiP2 crystals generate tunable output in the mid-infrared. Their performance, however, is often limited by unwanted optical absorption bands that overlap the pump wavelengths. A broad defect-related optical absorption band peaking near 800 nm, with a shoulder near 1 µm, can be photoinduced at room temperature in many CdSiP2 crystals. This absorption band is efficiently produced with 633 nm laser light and decays with a lifetime of ∼0.5 s after removal of the excitation light. The 800 nm band is accompanied by a less intense absorption band peaking near 1.90 µm. Data from eight CdSiP2crystals grown at different times show that the singly ionized silicon vacancy (V-Si) is responsible for the photoinduced absorption bands. Electron paramagnetic resonance (EPR) is used to identify and directly monitor these silicon vacancies. © 2017 Optical Society of Americ

    Residual Optical Absorption from Native Defects in CdSiP\u3csub\u3e2\u3c/sub\u3e Crystals

    Get PDF
    CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts V-Si acceptors to their neutral and doubly ionized charge states (V0-Si and V2-Si , respectively) and greatly reduces the intensities of the three absorption bands. Subsequent warming to room temperature restores the singly ionized charge state of the silicon vacancies and brings back the absorption bands. Transitions responsible for the absorption bands are identified, and a mechanism that allows 1064 nm light to remove the singly ionized charge state of the silicon vacancies is proposed

    Ir \u3csup\u3e4+\u3c/sup\u3e Ions in β-Ga\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e3\u3c/sub\u3e Crystals: An Unintentional Deep Donor

    Get PDF
    Electron paramagnetic resonance (EPR) and infrared absorption are used to detect Ir4+ ions in β-Ga2O3 crystals. Mg and Fe doped crystals are investigated, and concentrations of Ir4+ ions greater than 1 × 1018 cm−3 are observed. The source of the unintentional deep iridium donors is the crucible used to grow the crystal. In the Mg-doped crystals, the Ir4+ ions provide compensation for the singly ionized Mg acceptors and thus contribute to the difficulties in producing p-type behavior. The Ir4+ ions replace Ga3+ ions at the Ga(2) sites, with the six oxygen neighbors forming a distorted octahedron. A large spin-orbit coupling causes these Ir4+ ions to have a low-spin (5d5, S = 1/2) ground state. The EPR spectrum consists of one broad line with a significant angular dependence. Principal values of the g matrix are 2.662, 1.815, and 0.541 (with principal axes near the crystal a, b, and c directions, respectively). Ionizing radiation at 77 K decreases the Ir4+ EPR signal in Mg-doped crystals and increases the signal in Fe-doped crystals. In addition to the EPR spectrum, the Ir4+ ions have an infrared absorption band representing a d-d transition within the t2g orbitals. At room temperature, this band peaks near 5153 cm−1 (1.94 μm) and has a width of 17 cm−1. The band is highly polarized: its intensity is maximum when the electric field E is parallel to the b direction in the crystal and is nearly zero when E is along the c direction

    Cardiovascular Health in Anxiety or Mood Problems Study (CHAMPS): study protocol for a randomized controlled trial

    Get PDF
    Background: Previous psychological and pharmacological interventions have primarily focused on depression disorders in populations with cardiovascular diseases (CVDs) and the efficacy of anxiety disorder interventions is only more recently being explored. Transdiagnostic interventions address common emotional processes and the full range of anxiety and depression disorders often observed in populations with CVDs. The aim of CHAMPS is to evaluate the feasibility of a unified protocol (UP) for the transdiagnostic treatment of emotional disorders intervention in patients recently hospitalized for CVDs. The current study reports the protocol of a feasibility randomized controlled trial to inform a future trial. Methods/Design: This is a feasibility randomized, controlled trial with a single-center design. A total of 50 participants will be block-randomized to either a UP intervention or enhanced usual care. Both groups will receive standard CVD care. The UP intervention consists of 1) enhancing motivation, readiness for change, and treatment engagement; (2) psychoeducation about emotions; (3) increasing present focused emotion awareness; (4) increasing cognitive flexibility; (5) identifying and preventing patterns of emotion avoidance and maladaptive emotion-driven behaviors (EDBs, including tobacco smoking, and alcohol use); (6) increasing tolerance of emotion-related physical sensations; (7) interoceptive and situation-based emotion-focused exposure; and (8) relapse prevention strategies. Treatment duration is 12 to 18 weeks. Relevant outcomes include the standard deviation of self-rated anxiety, depression and quality of life symptoms. Other outcomes include intervention acceptability, satisfaction with care, rates of EDBs, patient adherence, physical activity, cardiac and psychiatric readmissions. Parallel to the main trial, a nonrandomized comparator cohort will be recruited comprising 150 persons scoring below the predetermined depression and anxiety severity thresholds. Discussion: CHAMPS is designed to evaluate the UP for the transdiagnostic treatment of emotional disorders targeting emotional disorder processes in a CVD population. The design will provide preliminary evidence of feasibility, attrition, and satisfaction with treatment to design a definitive trial. If the trial is feasible, it opens up the possibility for interventions to target broader emotional processes in the precarious population with CVD and emotional distress.Phillip J. Tully, Deborah A. Turnbull, John D. Horowitz, John F. Beltrame, Terina Selkow, Bernhard T. Baune, Elizabeth Markwick, Shannon Sauer-Zavala, Harald Baumeister, Suzanne Cosh and Gary A. Witter

    Photoinduced Trapping of Charge at Sulfur Vacancies and Copper Ions in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals

    No full text
    Electron paramagnetic resonance (EPR) is used to monitor photoinduced changes in the charge states of sulfur vacancies and Cu ions in tin hypothiodiphosphate. A Sn2P2S6 crystal containing Cu+ (3d10) ions at Sn2+ sites was grown by the chemical vapor transport method. Doubly ionized sulfur vacancies (V2+S) are also present in the as-grown crystal (where they serve as charge compensators for the Cu+ ions). For temperatures below 70 K, exposure to 532 or 633 nm laser light produces stable Cu2+ (3d9) ions, as electrons move from Cu+ ions to sulfur vacancies. A g matrix and a 63,65Cu hyperfine matrix are obtained from the angular dependence of the Cu2+ EPR spectrum. Paramagnetic singly ionized (V+S) and nonparamagnetic neutral (V0S) charge states of the sulfur vacancies, with one and two trapped electrons, respectively, are formed during the illumination. Above 70 K, the neutral vacancies (V0S) are thermally unstable and convert to V+S vacancies by releasing an electron to the conduction band. These released electrons move back to Cu2+ ions and restore Cu+ ions. Analysis of isothermal decay curves acquired by monitoring the intensity of the Cu2+ EPR spectrum between 74 and 82 K, after removing the light, gives an activation energy of 194 meV for the release of an electron from a V0S vacancy. Warming above 120 K destroys the V+S vacancies and the remaining Cu2+ ions. The photoinduced EPR spectrum from a small concentration of unintentionally present Ni+ ions at Sn2+ sites is observed near 40 K in the Sn2P2S6 crystal

    Charge Trapping by Iodine Ions in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals

    No full text
    Electron paramagnetic resonance (EPR) is used to establish the role of iodine as an electron trap in tin hypothiodiphosphate (Sn2P2S6) crystals. Iodine ions are unintentionally incorporated when the crystals are grown by the chemical-vapor-transport method with SnI4 as the transport agent. The Sn2P2S6 crystals consist of Sn2+ ions and (P2S6)4− anionic groups. During growth, an iodine ion replaces a phosphorus in a few of the anionic groups, thus forming (IPS6)4− molecular ions. Following an exposure at low temperature to 633 nm laser light, these (IPS6)4− ions trap an electron and convert to EPR-active (IPS6)5− groups with S = 1/2. A concentration near 1.1 × 1017 cm−3 is produced. The EPR spectrum from the (IPS6)5− ions has well-resolved structure resulting from large hyperfine interactions with the 127I and 31P nuclei. Analysis of the angular dependence of the spectrum gives principal values of 1.9795, 2.0123, and 2.0581 for the g matrix, 232 MHz, 263 MHz, and 663 MHz for the 127I hyperfine matrix, and 1507 MHz, 1803 MHz, and 1997 MHz for the 31P hyperfine matrix. Results from quantum-chemistry modeling (unrestricted Hartree–Fock/second-order Møller–Plesset perturbation theory) support the (IPS6)5− assignment for the EPR spectrum. The transient two-beam coupling gain can be improved in these photorefractive Sn2P2S6 crystals by better controlling the point defects that trap charge
    corecore