34 research outputs found

    Epidermal growth factor receptor is expressed and active in a subset of acute myeloid leukemia

    Get PDF
    The epidermal growth factor receptor (EGFR) inhibitor erlotinib has been shown to induce complete remission of acute myeloid leukemia (AML) in two patients with concurrent lung cancer and raised attention for a role of EGFR in AML whereas a recent phase II clinical study with gefitinib in AML demonstrated a negative result on the outcome. However, from several studies, EGFR expression in AML is poorly defined and the role of EGFR in AML remains unclear. Herein, we report the results of EGFR expression in AML of large cohorts of adult and pediatric AML patients with the data of total protein and phosphorylation levels of EGFR. Our data conclude that there is the expression of EGFR at the protein level in a subset of AML, which was identified to be functionally active in similar to 15 % of AML patients. This suggests that future studies need to be conducted with a subset of AML patients characterized by high EGFR expression

    Peptide microarray of pediatric acute myeloid leukemia is related to relapse and reveals involvement of DNA damage response and repair

    Get PDF
    The majority of acute myeloid leukemia (AML) patients suffer from relapse and the exact etiology of AML remains unclear. The aim of this study was to gain comprehensive insights into the activity of signaling pathways in AML. In this study, using a high-throughput PepChipâ„¢ Kinomics microarray system, pediatric AML samples were analyzed to gain insights of active signal transduction pathway. Unsupervised hierarchical cluster analysis separated the AML blast profiles into two clusters. These two clusters were independent of patient characteristics, whereas the cumulative incidence of relapse (CIR) was significantly higher in the patients belonging to cluster-2. In addition, cluster-2 samples showed to be significantly less sensitive to various chemotherapeutic drugs. The activated peptides in cluster-1 and cluster-2 reflected the activity of cell cycle regulation, cell proliferation, cell differentiation, apoptosis, PI3K/AKT, MAPK, metabolism regulation, transcription factors and GPCRs signaling pathways. The difference between two clusters might be explained by the higher cell cycle arrest response in cluster-1 patients and higher DNA repair mechanism in cluster-2 patients. In conclusion, our study identifies different signaling profiles in pediatric AML in relation with CIR involving DNA damage response and repair

    CREB signaling activity correlates with differentiation and survival in medulloblastoma

    Get PDF
    While there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy

    Peptide microarray profiling identifies phospholipase C gamma 1 (PLC-γ1) as a potential target for t(8;21) AML

    Get PDF
    The t(8;21) (q22;q22) chromosomal translocation is one of the most frequent genetic alterations in acute myeloid leukemia (AML) which has a need for improved therapeutic strategies. We found PLC-γ1 as one of the highest phosphorylated peptides in t(8;21) AML samples compared to NBM or CN-AML in our previous peptide microarray. PLC-γ1 is known to play a role in cancer progression, however, the impact of PLC-γ1 in AML is currently unknown. Therefore, we aimed to study the functional role of PLC-γ1 by investigating the cellular growth, survival and its underlying mechanism in t(8;21) AML.  In this study, PLC-γ1 expression was significantly higher in t(8;21) AML compared to other karyotypes. The PLC-γ1 protein expression was suppressed in AML1-ETO knock down cells indicating that it might induce kasumi-1 cell death. ShRNA-mediated PLC-γ1 knockdown in kasumi-1 cells significantly blocked cell growth, induced apoptosis and cell cycle arrest which was explained by the increased activation of apoptotic related and cell cycle regulatory protein expressions. Gene expression array analysis showed the up-regulation of apoptotic and DNA damage response genes together with the downregulation of cell growth, proliferation and differentiation genes in the PLC-γ1 suppressed kasumi-1 cells, consistent with the observed phenotypic effects. Importantly, PLC-γ1 suppressed kasumi-1 cells showed higher chemosensitivity to the chemotherapeutic drug treatments and lower cell proliferation upon hypoxic stress.  Taken together, these in vitro finding strongly support an important role for PLC-γ1 in the survival of t(8;21) AML mimicking kasumi-1 cells and identify PLC-γ1 as a potential therapeutic target for t(8;21) AML treatment

    Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC

    Get PDF
    Background The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated. Objective We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value. Patients and Methods Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score >= 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors. Results Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively. Conclusions Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival

    Identification of Two Protein-Signaling States Delineating Transcriptionally Heterogeneous Human Medulloblastoma

    Get PDF
    Summary: The brain cancer medulloblastoma consists of different transcriptional subgroups. To characterize medulloblastoma at the phosphoprotein-signaling level, we performed high-throughput peptide phosphorylation profiling on a large cohort of SHH (Sonic Hedgehog), group 3, and group 4 medulloblastomas. We identified two major protein-signaling profiles. One profile was associated with rapid death post-recurrence and resembled MYC-like signaling for which MYC lesions are sufficient but not necessary. The second profile showed enrichment for DNA damage, as well as apoptotic and neuronal signaling. Integrative analysis demonstrated that heterogeneous transcriptional input converges on these protein-signaling profiles: all SHH and a subset of group 3 patients exhibited the MYC-like protein-signaling profile; the majority of the other group 3 subset and group 4 patients displayed the DNA damage/apoptotic/neuronal signaling profile. Functional analysis of enriched pathways highlighted cell-cycle progression and protein synthesis as therapeutic targets for MYC-like medulloblastoma. : Using peptide phosphorylation profiling, Zomerman et al. identify two medulloblastoma phosphoprotein-signaling profiles that have prognostic value and are potentially targetable. They find that these profiles extend across transcriptome-based subgroup borders. This suggests that diverse genetic information converges on common protein-signaling pathways and highlights protein-signaling as a unique information layer. Keywords: medulloblastoma, protein-signaling, protein synthesis, MYC, TP53, proteome, phosphoproteom

    VEGF-A promotes lymphoma tumour growth by activation of STAT proteins and inhibition of p27(KIP1) via paracrine mechanisms

    No full text
    Increased levels of circulating VEGF-A have been demonstrated in patients with non-Hodgkin lymphoma (NHL) and are associated with progressive disease and poor clinical outcome. We investigated the role of VEGF-A in lymphoma tumour growth on a molecular level in order to identify the mechanism of VEGF-A-promoted tumour growth and to identify the potential targets for therapy. We used a model in which Daudi (human Burkitt lymphoma) tumour cells were transduced with VEGF-A165 or an empty vector (negative control) and subcutaneously injected in NOD/SCID mice. The weight of tumours over-expressing VEGF-A was increased 4-fold compared to that of control tumours (p <0.0001), whereas no in vitro growth advantage was demonstrated upon VEGF-A overexpression. VEGF-A-tumours were associated with increased microvessel densities (p = 0.004) and increased tumour cell proliferation (Ki67; p <0.001) compared to control tumours. VEGF-A-tumours were characterised by upregulation of phosphorylated STAT-4 and STAT-6 and downregulation of phospho-p27(KIP1), a crucial cell cycle inhibitor (p <0.05). This was accompanied by increased levels of phosphorylated receptor tyrosine kinases, including EGFR (ErbB-2 and ErbB-4, p <0.05), an upstream regulator of STAT proteins. We demonstrated that various mouse-derived cytokines produced by mouse-derived tumour stromal cells are upregulated in VEGF-A-tumours compared to control tumours (p <0.05). These results indicate an important role for the tumour microenvironment in paracrine promotion of lymphoma tumour growth in response to tumour-derived VEGF-A. In conclusion, lymphoma-derived VEGF-A promoted lymphoma tumour growth in a paracrine loop by activation of tumour stromal cells. Our study reveals VEGF-A and STAT proteins as potential additional targets in the treatment of lymphoma. (C) 2009 Elsevier Ltd. All rights reserved
    corecore