7,571 research outputs found

    Possible indicators for low dimensional superconductivity in the quasi-1D carbide Sc3CoC4

    Get PDF
    The transition metal carbide Sc3CoC4 consists of a quasi-one-dimensional (1D) structure with [CoC4]_{\inft} polyanionic chains embedded in a scandium matrix. At ambient temperatures Sc3CoC4 displays metallic behavior. At lower temperatures, however, charge density wave formation has been observed around 143K which is followed by a structural phase transition at 72K. Below T^onset_c = 4.5K the polycrystalline sample becomes superconductive. From Hc1(0) and Hc2(0) values we could estimate the London penetration depth ({\lambda}_L ~= 9750 Angstroem) and the Ginsburg-Landau (GL) coherence length ({\xi}_GL ~= 187 Angstroem). The resulting GL-parameter ({\kappa} ~= 52) classifies Sc3CoC4 as a type II superconductor. Here we compare the puzzling superconducting features of Sc3CoC4, such as the unusual temperature dependence i) of the specific heat anomaly and ii) of the upper critical field H_c2(T) at T_c, and iii) the magnetic hysteresis curve, with various related low dimensional superconductors: e.g., the quasi-1D superconductor (SN)_x or the 2D transition-metal dichalcogenides. Our results identify Sc3CoC4 as a new candidate for a quasi-1D superconductor.Comment: 4 pages, 5 figure

    Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    Full text link
    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical absorption on the D2 transition at 780 nm and vacuum chamber pressure rate of rise tests. We have demonstrated a sample of laser-cooled Rb atoms in this chamber when isolated and operating without active vacuum pumps

    Functional renormalization and mean-field approach to multiband systems with spin-orbit coupling: Application to the Rashba model with attractive interaction

    Full text link
    The functional renormalization group (RG) in combination with Fermi surface patching is a well-established method for studying Fermi liquid instabilities of correlated electron systems. In this article, we further develop this method and combine it with mean-field theory to approach multiband systems with spin-orbit coupling, and we apply this to a tight-binding Rashba model with an attractive, local interaction. The spin dependence of the interaction vertex is fully implemented in a RG flow without SU(2) symmetry, and its momentum dependence is approximated in a refined projection scheme. In particular, we discuss the necessity of including in the RG flow contributions from both bands of the model, even if they are not intersected by the Fermi level. As the leading instability of the Rashba model, we find a superconducting phase with a singlet-type interaction between electrons with opposite momenta. While the gap function has a singlet spin structure, the order parameter indicates an unconventional superconducting phase, with the ratio between singlet and triplet amplitudes being plus or minus one on the Fermi lines of the upper or lower band, respectively. We expect our combined functional RG and mean-field approach to be useful for an unbiased theoretical description of the low-temperature properties of spin-based materials.Comment: consistent with published version in Physical Review B (2016

    Spontaneous breaking of spatial and spin symmetry in spinor condensates

    Get PDF
    Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our experiments permit a precise analysis of the amplification in specific spatial Bessel-like modes, allowing for the detailed understanding of the double symmetry breaking. On resonances that create vortex-antivortex superpositions, we show that the cylindrical spatial symmetry is spontaneously broken, but phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate spin modes contribute to the amplification, quantum interferences lead to spin-dependent density profiles and hence spontaneously-formed patterns in the longitudinal magnetization.Comment: 5 pages, 4 figure

    Gauge symmetric delta(1232) couplings and the radiative muon capture in hydrogen

    Full text link
    Using the difference between the gauge symmetric and standard pi-N-delta couplings, a contact pi-pi-N-N term, quadratic in the pi-N-delta coupling, is explicitly constructed. Besides, a contribution from the delta excitation mechanism to the photon spectrum for the radiative muon capture in hydrogen is derived from the gauge symmetric pi-N-delta and gamma-N-delta couplings. It is shown for the photon spectrum, studied recently experimentally, that the new spectrum is for the photon momentums k > 60 MeV by 4-10 % smaller than the one obtained from standardly used couplings with the on-shell deltas.Comment: 9 pages, 3 figure

    Scanning a photonic crystal slab nanocavity by condensation of xenon

    Get PDF
    Allowing xenon or nitrogen gas to condense onto a photonic crystal slab nanocavity maintained at 10–20 K results in shifts of the nanocavity mode wavelength by as much as 5 nm (~=4 meV). This occurs in spite of the fact that the mode defect is achieved by omitting three holes to form the spacer. This technique should be useful in changing the detuning between a single quantum dot transition and the nanocavity mode for cavity quantum electrodynamics experiments, such as mapping out a strong coupling anticrossing curve. Compared with temperature scanning, it has a much larger scan range and avoids phonon broadening

    Improvement by laser quenching of an "atom diode": a one-way barrier for ultra-cold atoms

    Full text link
    Different laser devices working as ``atom diodes'' or ``one-way barriers'' for ultra-cold atoms have been proposed recently. They transmit ground state level atoms coming from one side, say from the left, but reflect them when they come from the other side. We combine a previous model, consisting of the stimulated Raman adiabatic passage (STIRAP) from the ground to an excited state and a state-selective mirror potential, with a localized quenching laser which produces spontaneous decay back to the ground state. This avoids backwards motion, provides more control of the decay process and therefore a more compact and useful device.Comment: 6 page

    Universality of the rho-meson coupling in effective field theory

    Full text link
    It is shown that both the universal coupling of the rho-meson and the Kawarabayashi-Suzuki-Riadzuddin-Fayyazuddin expression for the magnitude of its coupling constant follow from the requirement that chiral perturbation theory of pions, nucleons, and rho-mesons is a consistent effective field theory. The prerequisite of the derivation is that all ultraviolet divergences can be absorbed in the redefinition of fields and the available parameters of the most general effective Lagrangian.Comment: 4 pages, 2 figures, REVTeX 4, accepted for publication in PR

    A Robust Semidefinite Programming Approach to the Separability Problem

    Get PDF
    We express the optimization of entanglement witnesses for arbitrary bipartite states in terms of a class of convex optimization problems known as Robust Semidefinite Programs (RSDP). We propose, using well known properties of RSDP, several new sufficient tests for the separability of mixed states. Our results are then generalized to multipartite density operators.Comment: Revised version (minor spell corrections) . 6 pages; submitted to Physical Review
    • …
    corecore