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A Robust Semidefinite Programming Approach to the Separability Problem
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We express the optimization of entanglement witnesses for arbitrary bipartite states in terms
of a class of convex optimization problems known as Robust Semidefinite Programs (RSDP). We
propose, using well known properties of RSDP, several new sufficient tests for separability of mixed
states. Our results are then generalized to multipartite density operators.

PACS numbers: 03.67.Mn

I. INTRODUCTION

Entanglement, first noticed by Einstein, Podolsky,
and Rosen [1], is at the heart of quantum mechanics.
Quantum teleportation, superdense coding and cryptog-
raphy [2] are achieved only when one deals with insepa-
rable states. Thus, the determination and quantification
of entanglement in a composite quantum state is one of
the most important tasks of quantum information the-
ory. In the past years a great deal of effort have been
made in order to obtain the characterization of separable
bipartite mixed states [3]. A finite-dimensional bipartite
density operator ρAB ∈ B(HA ⊗HB) (the Hilbert space
of bounded operators acting on HA ⊗ HB) is separable
iff it can be written as a convex sum of separable pure
states:

ρAB =
∑

i=1

pi|ψi〉AA〈ψi| ⊗ |φi〉BB〈φi| (1)

where {pi} is a probability distribution and |ψi〉A, |φi〉B
are vectors belonging to Hilbert spaces HA and HB, re-
spectively. Despite the simplicity of this definition, none
operational necessary and sufficient criterion have been
found for the separability problem until now. More-
over, it was showed by Gurvits [4] that this problem
is NP-HARD. Therefore, we should not expect to find
a polynomial-time algorithm which determines for any
state ρAB, with certainty, if it is possible to decompose
it in the form of equation (1).

A particularly useful concept is that of entanglement
witness (EW). According to [5], an operator ρAB is
entangled iff there exists a self-adjoint operator W ∈
B(HA ⊗ HB) which detects its entanglement, i.e., such
that Tr(WρAB) < 0 and Tr(WσAB) ≥ 0 for all σAB sep-
arable. This condition follows from the fact that the set
of separable states is convex and closed in B(HA ⊗HB).
Therefore, as a conclusion of the Hahn-Banach theorem,
for all entangled states there is a linear functional which
separates it from this set. Unfortunately, it is not known
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how to construct EW in a canonical way and in polyno-
mial time for every entangled state. Actually, since such
method would solve the separability problem, it can not
exist as long as the strong conjecture P 6= NP is true.

In this paper, we show that the search of EW for ar-
bitrary mixed states is indeed NP-HARD. We introduce,
in the context of quantum information, a class of con-
vex optimization problems known as Robust Semidefi-
nite Programs (RSDP), whose NP-hardness in most of
the cases was already proved. This family generalizes
the important Semidefinite Programs (SDP), which have
been increasingly used in quantum information problems
(see, for example, [9] and [10]).

The paper is organized as follows. In section 2 we
briefly recall the definition of EW and define our concept
of optimal entanglement witness; in section 3 we state
the basic facts about Robust Semidefinite Programs, ex-
press the optimization of EW as a RSDP and provide
a first approximation in terms of SDP for the problem,
which yields a new sufficient criterion of separability; in
section 4 we parametrize all possible approximations of
the RSDP in terms of a multiplier matrix, reducing the
search space of approximation scenarios; in section 5 we
generalize our results to multipartite states. Finally, in
section 6, we present our conclusions and suggest direc-
tions for further research.

II. OPTIMAL ENTANGLEMENT WITNESS

A hermitian operator W ∈ B(HA ⊗HB) is an entan-
glement witness if [5] [6]:

1. A〈ψ| ⊗B 〈φ|W |φ〉B ⊗ |ψ〉A ≥ 0, for all states |ψ〉 ∈
HA and |φ〉 ∈ HB.

2. W has at least one negative eigenvalue.

3. Tr(W ) = 1.

Condition one assures that Tr(WσAB) > 0 for all separa-
ble states σAB. Condition two implies that Tr(WP ) < 0
at least for one entangled state, for example, the projec-
tor on the eigenspace associated with the negative eigen-
value. The third condition is important in order to com-
pare different EW.
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Definition 1 A hermitian operator WρAB
is an optimal

EW for the density operator ρAB if

Tr(WρAB
ρAB) ≤ Tr(WρAB) (2)

for every EW W .

Although the above definition of OEW is different from
the one introduced in [7], the optimal EW of both criteria
are equal. According to [7], W is optimal iff for all P ≥ 0,
W ′ = (1 + ǫ)W − ǫP is not an EW.

III. ROBUST SEMIDEFINITE PROGRAMS

In this section we will express the search of an opti-
mal EW for an arbitrary state ρAB in terms of a robust
semidefinite program (RSDP). A semidefinite program
(SDP) consists of minimizing a linear objective under a
linear matrix inequality (LMI) constraint, precisely,

minimize c†x subject to

F (x) = F0 +

m
∑

i=1

xiFi ≥ 0 (3)

where c ∈ Cm and the hermitian matrices Fi = F †
i ∈ Cnxn

are given and x ∈ Cm is the vector of optimization vari-
ables. F (x) ≥ 0 means F (x) is hermitian and positive
semidefinite. SDPs are global convex optimization pro-
grams and can be solved in polynomial time with interior-
point algorithms [8]. For instance, if there are m opti-
mization variables and F (x) is a nxn matrix, the number
of operations scales with problem size as O(m2n2). SDPs
have already been used in different problems of quantum
information theory [9] and also in the separability prob-
lem [10]. An important generalization of (3) is when the
data matrices Fi are not constant, i.e., they depend of a
parameter which varies within a certain subspace. This
family of problems, known as robust semidefinite pro-
grams, is given by:

minimize c†x subject to

F (x,∆) = F0(∆) +
m

∑

i=1

xiFi(∆) ≥ 0, ∀∆ ∈ D (4)

where D is a given vectorial (sub)space. Note that prob-
lem (4) is more difficult to solve than (3), since one must
find an optimization vector x such that F (x,∆) is pos-
itive semidefinite for all ∆ ∈ D. One often encounters
SDP in which the variables are matrices and in which
the inequality depends affinely on those matrices. These
problems can be readily put into the form (3) by intro-
ducing a base of hermitian matrices to each matrix vari-
able. However, since most of optimization solvers [11] ad-
mit declaration of problems in this most general form, it
is not necessary to write out the LMI explicitly as (3), but

instead make clear which matrices are variables. Equal-
ities constraints involving the optimization variables can
also appear in (3) and (4) without any further computa-
tional effort. We can now enunciate the main result of
this paper.

Theorem 1 A state ρAB ∈ B(HA ⊗ HB) is entangled,
i.e., can not be decomposed as (1) iff the optimal value of
the following RSDP is negative:

minimize Tr(WρAB) subject to

dA
∑

i=1

dA
∑

j=1

a∗i ajWij ≥ 0, T r(W ) = 1, for all ai ∈ C (5)

where dA is the dimension of HA, Wij =A 〈i|W |j〉A ∈
B(HB) and |j〉A is an orthonormal base of HA. If ρAB

is entangled, the matrix W which minimizes Tr(WρAB)
is the OEW for ρAB.

proof: First we have to show that (5) is a genuine RSDP.
Note thatWij =A 〈i|W |j〉A and the objective Tr(WρAB)
are both linear in the matrix variable W . Thus, (5)
can be put into the form (4), where D in this case is
CdA . We know that a state ρAB is entangled iff there
exists an operator W such that Tr(WρAB) ≤ 0 and

A〈ψ| ⊗B 〈φ|W |φ〉B ⊗ |ψ〉A ≥ 0 for all states |ψ〉 ∈ HA

and |φ〉 ∈ HB. Therefore, the matrix A〈ψ|W |ψ〉A has
to be semidefinite positive for all |ψ〉A ∈ HA. Letting
|ψ〉A =

∑

j aj |j〉A, where |j〉A is an orthonormal base of
HA, it is straightforward to show that the optimal W
given by (5) is the OEW of ρAB. QED.

In spite of the similarity between (3) and (4), RSDPs
are in general very hard optimization problems. Actually,
it was proved that robust semidefinite programs like (5)
are NP-HARD [12].

Corollary 1 The determination of the OEW for an ar-
bitrary state ρAB is a NP-HARD problem.

Since (5) is computationally intractable, it is natural to
search for approximations of it in terms of SDPs, which
are very efficiently solved. These relaxations of RSDP
have been intensively studied [13] in the past years and
can be classified as probabilistic or deterministic. In
this paper we will focus in the deterministic relaxations,
where (4) is replaced by an inner convex approximation
described by a linear matrix inequality constraint. This
inner approximation is then used to find an upper bound
to the optimal value of (4). The probabilistic approach,
which yields outstanding results on the separability prob-
lem, will be reported elsewhere. As a first example of
such relaxations, consider the following adaptation of
[14]:

Theorem 2 A density operator ρAB is entangled and the
optimal value of W is an EW for it if the result of the
following SDP is negative:

minimize T r(WρAB) subject to (6)
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1. Wkk ≥ 0, k = 1, 2, .., dA

2. 1
dA−1

Wkk ±
√

2
2

(Wkj +Wjk) ≥ 0, 1 ≤ k 6= j ≤ dA.

3. 1
dA−1

Wkk ±
√

2
2i

(Wkj −Wjk) ≥ 0, 1 ≤ k 6= j ≤ dA.

proof: Note that:

∑

k,j

a∗kajWkj =
∑

1≤k≤j≤dA

[

1

dA − 1
|ak|2Wkk

+ a∗kajWkj + a∗jakWjk +
1

dA − 1
|ak|2Wkk

]

≥ 0

Thus, a sufficient condition to (5) is:

M(|e〉) =

[

〈e| Wkk

dA−1
|e〉 〈e|Wkj |e〉

〈e|Wjk|e〉 〈e| Wjj

dA−1
|e〉

]

≥ 0, ∀|e〉 ∈ HB

This matrixM(|e〉) is positive semidefinite iff its diagonal
entries and determinant are greater than or equal to zero.
From condition 1 it follows that M11 ≥ 0 and M22 ≥ 0.
From conditions 2 and 3:

〈e| Wkk

dA − 1
|e〉〈e| Wjj

dA − 1
|e〉 ≥ 2[max{〈e|

√
2

2
(Wkj+Wjk)|e〉,

〈e|
√

2

2i
(Wkj −Wjk)|e〉}]2 ≥ 〈e|Wkj |e〉〈e|Wjk|e〉

⇒ det(M(|e〉) > 0. QED.
We present now the first example of our methodology.

We used MATLAB and the package SEDUMI [11] to im-
plement and solve the SDP.

A. Bell State

We consider the following Bell state |Ψ〉 = (|0〉 ⊗ |0〉+

|1〉 ⊗ |1〉)/
√

2. It is well known that 〈Ψ|W|Ψ〉〈Ψ||Ψ〉 =

−1/2 [15], where W|Ψ〉〈Ψ| = − 1
2
(|00〉〈11| + |11〉〈00|) +

1
2
(|01〉〈01|+ |10〉〈10|) is the OEW for this state. Solving

the SDP of theorem 2, the following EW was found

W =







0.1057 0 0 −0.2887
0 0.3943 0 0
0 0 0.3943 0

−0.2887 0 0 0.1057







Since program (6) is only a relaxation of (5), W is not
the OEW for |Ψ〉, 〈Ψ|Wopt|Ψ〉 = −0.1835.

B. Isospectral States

We now consider the two isospectral matrices:

ρAB =







1/3 0 0 0
0 1/3 1/3 0
0 1/3 1/3 0
0 0 0 0







σAB =







1/3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2/3







The positive partial transpose criterion show that ρAB is
entangled, while σAB is separable. Using the SDP (6),
we have found the following EW for ρAB:

W =







0.1752 0 0 0
0 0.1752 −0.2478 0
0 −0.2478 0.0513 0
0 0 0 0.5982






(7)

where Tr(WρAB) = −0.0313. The method has also
succeeded in the state σAB , as the optimal value for
Tr(WσAB) founded was 2.7330x10−5.

IV. COMPLETE FAMILY OF PARAMETRIZED

RELAXATIONS

It must be stressed that theorem 2 is only one of the
possible approximations of (5). In fact, every relaxation
of the RSDP constitutes a different method of EW con-
struction and, therefore, a new sufficient criterion of sep-
arability. In this section we will show that all these possi-
ble relaxations can be parametrized in terms of a family
of matrices. However, in order to provide such method,
it is necessary firstly to introduce some standard results
concerning robust semidefinite programs. One partic-
ularly important representation of robust linear matrix
inequalities is the Linear Fraction Representation (LFR)
[13] [16]. It was showed that every matrix F ∈ Cnxc

which depends rationally of a varying parameter δ ∈ Ck

can be expressed as [16]:

F (δ) = A+B∆(I −D∆)−1C (8)

where A ∈ Cnxc, B ∈ CnxN , C ∈ CNxc and D ∈ CNxN

are constant matrices, r1, ..., rk and N = r1 + ...+ rk are
integer numbers and ∆ is the following diagonal matrix:

∆ = Diag(δ1Ir1
, ..., δkIrk

)

We can now express problem (5) in terms of a LFR.

Theorem 3 A state ρAB is entangled and the optimal
value of W is the OEW for it iff the result of the following
RSDP is negative:

minimize Tr(WρAB) subject to

F (∆) = B∆(I −D∆)−1C > 0, ∀∆ ∈ D (9)

where

B = [W11 ... Wn1 W12 ... Wnn 0dA;dAdB
] (10)

C =
[

0dA;d2

B
dA

L⊗ IdA

]†
(11)
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D =

[

0dAd2

B ;dAd2

B
L† ⊗ IdAdB

0dAdB ;dAd2

B
0dAdB ;dAdB

]

(12)

∆ = Diag
(

a1IdAdB
, ..., adA

IdAdB
, a∗1IdA

, ..., a∗dA
IdA

)

(13)
and D is the subspace of diagonal matrices in the form
of (12), where aj ∈ C. 0p;q and Ip stand for the p x q zero
matrix and the p x p identity matrix, respectively. L is an
auxiliary matrix given by:

L = [1, 1, ..., 1] ∈ HB

proof: We must show that the LMI of (8) is equivalent
to the LMI of (5). In order to do that, we will use con-
structive formulas of addition and multiplication of LFRs
presented in the appendix. Each quadratic term from the
LMI of (5) can be written as

a∗i ajWij = {0 + 1 × a∗i (1 − 0 × a∗i )
−1 × 1}×

{0 +Wij × a∗i (I − 0 × a∗i )
−1 × I}

A LFR to each term and then to the whole expression
can now be obtained using the addition and the multi-
plication formulas, respectively. QED.

There are several approximations for robust linear ma-
trix inequalities (RLMI) which are described as LFR
[13]. One of particular importance is the Full Block S-
Procedure [17]:

Theorem 4 (Full Block S-Procedure [17]) The matrix
F (∆) = A+B∆(I −D∆)−1C is well posed and satisfies

[

I
F (∆)

]† [

0 X
X 0

] [

I
F (∆)

]

≤ 0, ∀∆ ∈ D (14)

iff there exists a multiplier

P =

[

Q S
S† R

]

(15)

with

[

∆
I

]†
P

[

∆
I

]

≥ 0, ∀∆ ∈ D (16)

such that







I 0
A B
0 I
C D







† 





0 X 0 0
X 0 0 0
0 0 Q S
0 0 S† R













I 0
A B
0 I
C D






≤ 0 (17)

We can now express all possible relaxations of (5) in
terms of the multiplier matrix P as follows:

Theorem 5 A state ρAB is entangled iff there exists a
multiplier matrix (15) such that (16) and (17) hold, with
X = −I. The matrices appearing in the LMI (17) are
given by equations (10 − 12) and the matrix ∆ is given
by (13).

proof: Noticing that F (δ) ≥ 0 is equivalent to (14) if
X = −I, the result follows easily from the application
of the Full Block S-Procedure (theorem 4) in the RSDP
(9). QED.

The families of matrices P such that (16) is satisfied
parametrize all possible relaxations of (5). Although the
determination of all such matrices is not a trivial prob-
lem, it is a lot easier than (14) and it is current subject
of intensive research. Further information on possible
choices of the matrix P can be found in [17]. As an
example, we consider now the most simple family of ma-
trices P for which (16) holds. In quantum mechanics one
usually deals with normalized states 〈ψ|ψ〉 = 1. There-
fore, the matrix ∆ satisfies ∆†∆ < I. In this case, the
following matrix P gives an approximation of (5):

P =

[

−I 0
0 I

]

V. MULTIPARTITE ENTANGLEMENT

So far we have only considered the bipartite case. In
this section we generalize the previous results to multi-
partite states. A density operator ρ1...n ∈ B(H1⊗...⊗Hn)
is separable if it can be decomposed as:

ρ1...n =
∑

i=1

pi|ψi〉11〈ψi| ⊗ ...⊗ |ψi〉nn〈ψi| (18)

Since the set of multipartite mixed separable states is also
convex, it is possible to apply the Hahn-Banach theorem
and establish the concept of EW in a straightforward
manner [18].

Theorem 6 A state ρ1...n ∈ B(H1 ⊗ ... ⊗Hn) is entan-
gled, i.e., can not be decomposed as (18) iff the optimal
value of the following RSDP is negative:

minimize Tr(Wρ1...n) subject to

dn
∑

i1=1

dn
∑

j1=1

...

dn
∑

in−1=1

dn
∑

jn−1=1

(

a∗i1 ... a
∗
in−1

aj1 ... ajn−1
(19)

Wi1...in−1j1...jn−1

)

≥ 0

Tr(W ) = 1, ∀aik
∈ C, 1 ≤ k ≤ n

where dn is the dimension of Hn, Wi1...in−1j1...jn−1
=

1〈i|⊗ ...⊗n−1〈i|W |j〉n−1⊗ ...⊗|j〉1 ∈ B(H1⊗ ...⊗Hn−1)
and |j〉k is an orthonormal base of Hk. If ρ1...n is entan-
gled, the matrix W which minimizes Tr(Wρ1...n) is the
OEW for ρ1...n.
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proof: We know that a state ρAB is entangled iff there
exists an operator W such that Tr(Wρ1...n) ≤ 0 and

1〈ψ|⊗ ...⊗n 〈ψ|W |ψ〉n⊗ ...⊗|ψ〉1 ≥ 0 for all states |ψ〉k ∈
HK . Thus, the matrix 1〈ψ|⊗ ...⊗n−1 〈ψ|W |ψ〉n−1 ⊗ ...⊗
|ψ〉1 ≥ 0 has to be semidefinite positive for all |ψ〉k ∈ HK .
Letting |ψ〉k =

∑

j a
k
j |j〉k, where |j〉k is an orthonormal

base of Hk, it is straightforward to show that the optimal
W given by (19) is the OEW of ρ1...n. QED.

Relaxations for (19) can be obtained using the same ar-
guments exposed before. Since the RLMI of (19) is poly-
nomial in the varying parameters, it can be expressed as
a LFR and we can apply the Full Block S-Procedure to
the multipartite case. Therefore, all possible determinis-
tic approximations of (19) can also be parametrized by
the matrix P. Further results concerning the application
of possible families of parameterizations of P in the op-
timization of EW will be reported elsewhere.

VI. CONCLUSION

In this paper we have introduced, in the context of
Quantum Information, a new class of optimization pro-
grams (RSDP), showing that the determination of the
OEW for an arbitrary state is NP-HARD. Several possi-
ble deterministic approximation scenarios have been pro-
posed to it, yielding new sufficient criteria of separability.
Our results were then straightforwardly generalized to
multipartite states. It was also showed that all sufficient
criteria of separability might be parametrized by a matrix
which satisfies a much simpler linear matrix inequality.
Therefore, it is of great importance a systematic study of
all possibles families of parameterizations for this matrix.

VII. APPENDIX: COMBINATION OF LFRS

We provide in this appendix some simple combination
rules for addition and multiplication of LFR used in this
paper. Consider two matrix described by the LFR for-
mat:

Fi(δ) = Ai +Bi∆i(I −Di∆i)
−1Ci

The sum of F1 and F2 has the LFR:

F (δ) = A+B∆(I −D∆)−1C (20)

with

A = A1 +A2, B = [B1 B2], C = [C1 C2]
†

D = Diag(D1, D2), ∆ = Diag(∆1,∆2)

The product of F1 and F2 is given by (20) with

A = A1A2, B = [B1 A1B2], C = [C1A2 C2]
†

D =

[

D1 C1B2

0 D2

]

, ∆ = Diag(∆1,∆2)
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