24 research outputs found
Rapid autopsies to enhance metastatic research: the UPTIDER post-mortem tissue donation program
Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting
Hereditary polycystic kidney disease is characterized by lymphopenia across all stages of kidney dysfunction : an observational study
Background: Polycystic kidney disease (PKD) is characterized by urinary tract infections and extrarenal abnormalities such as an increased risk of cancer. As mutations in polycystin-1 and -2 are associated with decreased proliferation of immortalized lymphoblastoid cells in PKD, we investigated whether lymphopenia could be an unrecognized trait of PKD.
Methods: We studied 700 kidney transplant recipients with ( n  = 126) or without PKD at the time of kidney transplantation between 1 January 2003 and 31 December 2014 at Ghent University Hospital. We also studied 204 patients with chronic kidney disease (CKD) with PKD and 204 matched CKD patients without PKD across comparable CKD strata with assessment between 1 January 1999 and 1 February 2016 at three renal outpatient clinics. We compared lymphocyte counts with multiple linear regression analysis to adjust for potential confounders. We analysed flow cytometric immunophenotyping data and other haematological parameters.
Results: Lymphocyte counts were 264/µL [95% confidence interval (CI) 144-384] and 345/µL (95% CI 245-445) (both P < 0.001) lower in the end-stage kidney disease (ESKD) and CKD cohort, respectively, after adjustment for age, sex, ln(C-reactive protein) and estimated glomerular filtration rate (in the CKD cohort only). In particular, CD8 + T and B lymphocytes were significantly lower in transplant recipients with versus without PKD (P   <   0.001 for both). Thrombocyte and monocyte counts were lower in patients with versus without PKD in both cohorts (P   <   0.001 for all analyses except P   =   0.01 for monocytes in the ESKD cohort).
Conclusion: PKD is characterized by distinct cytopenias and especially lymphopenia, independent of kidney function. This finding has the potential to alter our therapeutic approach to patients with PKD
PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma
Abstract The combination of atezolizumab plus bevacizumab (atezo/bev) has dramatically changed the treatment landscape of advanced HCC (aHCC), achieving durable responses in some patients. Using single-cell transcriptomics, we characterize the intra-tumoural and peripheral immune context of patients with aHCC treated with atezo/bev. Tumours from patients with durable responses are enriched for PDL1+ CXCL10+ macrophages and, based on cell–cell interaction analysis, express high levels of CXCL9/10/11 and are predicted to attract peripheral CXCR3 + CD8+ effector-memory T cells (CD8 TEM) into the tumour. Based on T cell receptor sharing and pseudotime trajectory analysis, we propose that CD8 TEM preferentially differentiate into clonally-expanded PD1- CD45RA+ effector-memory CD8+ T cells (CD8 TEMRA) with pronounced cytotoxicity. In contrast, in non-responders, CD8 TEM remain frozen in their effector-memory state. Finally, in responders, CD8 TEMRA display a high degree of T cell receptor sharing with blood, consistent with their patrolling activity. These findings may help understand the possible mechanisms underlying response to atezo/bev in aHCC
Transcriptomic characterization of the histopathological growth patterns in breast cancer liver metastases
Metastatic breast cancer (mBC) remains incurable and liver metastases (LM) are observed in approximately 50% of all patients with mBC. In some cases, surgical resection of breast cancer liver metastases (BCLM) is associated with prolonged survival. However, there are currently no validated marker to identify these patients. The interactions between the metastatic cancer cells and the liver microenvironment result in two main histopathological growth patterns (HGP): replacement (r-HGP), characterized by a direct contact between the cancer cells and the hepatocytes, and desmoplastic (d-HGP), in which a fibrous rim surrounds the tumor cells. In patients who underwent resection of BCLM, the r-HGP is associated with a worse postoperative prognosis than the d-HGP. Here, we aim at unraveling the biological differences between these HGP within ten patients presenting both HGP within the same metastasis. The transcriptomic analyses reveal overexpression of genes involved in cell cycle, DNA repair, vessel co-option and cell motility in r-HGP while angiogenesis, wound healing, and several immune processes were found overexpressed in d-HGP LM. Understanding the biology of the LM could open avenues to refine treatment of BC patients with LM.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Effect of Antibiotic Prophylaxis on Surgical Site Infections Following Removal of Orthopedic Implants Used for Treatment of Foot, Ankle, and Lower Leg Fractures: A Randomized Clinical Trial
Following clean (class I, not contaminated) surgical procedures, the rate of surgical site infection (SSI) should be less than approximately 2%. However, an infection rate of 12.2% has been reported following removal of orthopedic implants used for treatment of fractures below the knee. To evaluate the effect of a single dose of preoperative antibiotic prophylaxis on the incidence of SSIs following removal of orthopedic implants used for treatment of fractures below the knee. Multicenter, double-blind, randomized clinical trial including 500 patients aged 18 to 75 years with previous surgical treatment for fractures below the knee who were undergoing removal of orthopedic implants from 19 hospitals (17 teaching and 2 academic) in the Netherlands (November 2014-September 2016), with a follow-up of 6 months (final follow-up, March 28, 2017). Exclusion criteria were an active infection or fistula, antibiotic treatment, reimplantation of osteosynthesis material in the same session, allergy for cephalosporins, known kidney disease, immunosuppressant use, or pregnancy. A single preoperative intravenous dose of 1000 mg of cefazolin (cefazolin group, n = 228) or sodium chloride (0.9%; saline group, n = 242). Primary outcome was SSI within 30 days as measured by the criteria from the US Centers for Disease Control and Prevention. Secondary outcome measures were functional outcome, health-related quality of life, and patient satisfaction. Among 477 randomized patients (mean age, 44 years [SD, 15]; women, 274 [57%]; median time from orthopedic implant placement, 11 months [interquartile range, 7-16]), 470 patients completed the study. Sixty-six patients developed an SSI (14.0%): 30 patients (13.2%) in the cefazolin group vs 36 in the saline group (14.9%) (absolute risk difference, -1.7 [95% CI, -8.0 to 4.6], P = .60). Among patients undergoing surgery for removal of orthopedic implants used for treatment of fractures below the knee, a single preoperative dose of intravenous cefazolin compared with saline did not reduce the risk of surgical site infection within 30 days following implant removal. clinicaltrials.gov Identifier: NCT0222582
Recommended from our members
Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages.
How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance