10 research outputs found

    Conduction Properties Distinguish Unmyelinated Sympathetic Efferent Fibers and Unmyelinated Primary Afferent Fibers in the Monkey

    Get PDF
    Different classes of unmyelinated nerve fibers appear to exhibit distinct conductive properties. We sought a criterion based on conduction properties for distinguishing sympathetic efferents and unmyelinated, primary afferents in peripheral nerves.In anesthetized monkey, centrifugal or centripetal recordings were made from single unmyelinated nerve fibers in the peroneal or sural nerve, and electrical stimuli were applied to either the sciatic nerve or the cutaneous nerve endings, respectively. In centrifugal recordings, electrical stimulation at the sympathetic chain and dorsal root was used to determine the fiber's origin. In centrifugal recordings, sympathetic fibers exhibited absolute speeding of conduction to a single pair of electrical stimuli separated by 50 ms; the second action potential was conducted faster (0.61 0.16%) than the first unconditioned action potential. This was never observed in primary afferents. Following 2 Hz stimulation (3 min), activity-dependent slowing of conduction in the sympathetics (8.6 0.5%) was greater than in one afferent group (6.7 0.5%) but substantially less than in a second afferent group (29.4 1.9%). In centripetal recordings, most mechanically-insensitive fibers also exhibited absolute speeding to twin pulse stimulation. The subset that did not show this absolute speeding was responsive to chemical stimuli (histamine, capsaicin) and likely consists of mechanically-insensitive afferents. During repetitive twin pulse stimulation, mechanosensitive afferents developed speeding, and speeding in sympathetic fibers increased.The presence of absolute speeding provides a criterion by which sympathetic efferents can be differentiated from primary afferents. The differences in conduction properties between sympathetics and afferents likely reflect differential expression of voltage-sensitive ion channels

    Shorter serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 December 2021.

    No full text
    The SARS-CoV-2 Omicron variant has a growth advantage over the Delta variant because of higher transmissibility, immune evasion or shorter serial interval. Using S gene target failure (SGTF) as indication for Omicron BA.1, we identified 908 SGTF and 1,621 non-SGTF serial intervals in the same period. Within households, the mean serial interval for SGTF cases was 0.2–0.6 days shorter than for non-SGTF cases. This suggests that the growth advantage of Omicron is partly due to a shorter serial interval

    Increased risk of infection with SARS-CoV-2 Omicron BA.1 compared with Delta in vaccinated and previously infected individuals, the Netherlands, 22 November 2021 to 19 January 2022.

    No full text
    Infections with the Omicron SARS-CoV-2 variant are rapidly increasing worldwide. Among 174,349 SARS-CoV-2-infected individuals (≥ 12 years), we observed an increased risk of S gene target failure, predictive of the Omicron variant, in vaccinated (odds ratio (OR): 3.6; 95% confidence interval (CI): 3.4–3.7) and previously infected individuals (OR: 4.2; 95% CI: 3.8–4.7) compared with infected naïve individuals. This suggests vaccine- or infection-induced immunity against SARS-CoV-2 infections is less effective against the Omicron than the Delta variant

    Shorter serial intervals in SARS-CoV-2 cases with Omicron BA.1 variant compared with Delta variant, the Netherlands, 13 to 26 December 2021

    No full text
    The SARS-CoV-2 Omicron variant has a growth advantage over the Delta variant because of higher transmissibility, immune evasion or shorter serial interval. Using S gene target failure (SGTF) as indication for Omicron BA.1, we identified 908 SGTF and 1,621 non-SGTF serial intervals in the same period. Within households, the mean serial interval for SGTF cases was 0.2-0.6 days shorter than for non-SGTF cases. This suggests that the growth advantage of Omicron is partly due to a shorter serial interval

    Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections

    No full text
    Given the emergence of the SARS-CoV-2 Omicron BA.1 and BA.2 variants and the roll-out of booster COVID-19 vaccination, evidence is needed on protection conferred by primary vaccination, booster vaccination and previous SARS-CoV-2 infection by variant. We employed a test-negative design on S-gene target failure data from community PCR testing in the Netherlands from 22 November 2021 to 31 March 2022 (n = 671,763). Previous infection, primary vaccination or both protected well against Delta infection. Protection against Omicron BA.1 infection was much lower compared to Delta. Protection was similar against Omicron BA.1 compared to BA.2 infection after previous infection, primary and booster vaccination. Higher protection was observed against all variants in individuals with both vaccination and previous infection compared with either one. Protection against all variants decreased over time since last vaccination or infection. We found that primary vaccination with current COVID-19 vaccines and previous SARS-CoV-2 infections offered low protection against Omicron BA.1 and BA.2 infection. Booster vaccination considerably increased protection against Omicron infection, but decreased rapidly after vaccination

    Protection of COVID-19 vaccination and previous infection against Omicron BA.1, BA.2 and Delta SARS-CoV-2 infections.

    No full text
    Given the emergence of the SARS-CoV-2 Omicron BA.1 and BA.2 variants and the roll-out of booster COVID-19 vaccination, evidence is needed on protection conferred by primary vaccination, booster vaccination and previous SARS-CoV-2 infection by variant. We employed a test-negative design on S-gene target failure data from community PCR testing in the Netherlands from 22 November 2021 to 31 March 2022 (n = 671,763). Previous infection, primary vaccination or both protected well against Delta infection. Protection against Omicron BA.1 infection was much lower compared to Delta. Protection was similar against Omicron BA.1 compared to BA.2 infection after previous infection, primary and booster vaccination. Higher protection was observed against all variants in individuals with both vaccination and previous infection compared with either one. Protection against all variants decreased over time since last vaccination or infection. We found that primary vaccination with current COVID-19 vaccines and previous SARS-CoV-2 infections offered low protection against Omicron BA.1 and BA.2 infection. Booster vaccination considerably increased protection against Omicron infection, but decreased rapidly after vaccination

    Nationwide harmonization effort for semi-quantitative reporting of SARS-CoV-2 PCR test results in Belgium

    No full text

    Nationwide Harmonization Effort for Semi-Quantitative Reporting of SARS-CoV-2 PCR Test Results in Belgium.

    No full text
    From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information. A proposal to harmonize reporting of test results was drafted by the National Reference Centre (NRC) UZ/KU Leuven, distinguishing four categories of positivity based on RNA copies/mL. Pre-quantified control material was shipped to 124 laboratories with instructions to setup a standard curve to define thresholds per assay. For each assay, the mean Ct value and corresponding standard deviation was calculated per target gene, for the three concentrations (10, 10 and 10 copies/mL) that determine the classification. The results of 17 assays are summarized. This harmonization effort allowed to ensure that all Belgian laboratories would report positive PCR results in the same semi-quantitative manner to clinicians and to the national database which feeds contact tracing interventions
    corecore