59 research outputs found

    Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough

    No full text
    International audienceImaging via pre-stack depth migration (PSDM) of reflection towed-streamer multichannel seismic (MCS) data at the scale of the whole crust is inherently difficult. This is because the depth penetration of the seismic wavefield is controlled, firstly, by the acquisition design, such as streamer length and air-gun source configuration, and secondly by the complexity of the crustal structure. Indeed, the limited length of the streamer makes the estimation of velocities from deep targets challenging due to the velocity–depth ambiguity. This problem is even more pronounced when processing 2-D seismic data due to the lack of multi-azimuthal coverage. Therefore, in order to broaden our knowledge about the deep crust using seismic methods, we present the development of specific imaging workflows that integrate different seismic data. Here we propose the combination of velocity model building using (i) first-arrival tomography (FAT) and full-waveform inversion (FWI) of wide-angle, long-offset data collected by stationary ocean-bottom seismometers (OBSs) and (ii) PSDM of short-spread towed-streamer MCS data for reflectivity imaging, with the former velocity model as a background model. We present an application of such a workflow to seismic data collected by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and the Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) in the eastern Nankai Trough (Tokai area) during the 2000–2001 Seize France Japan (SFJ) experiment. We show that the FWI model, although derived from OBS data, provides an acceptable background velocity field for the PSDM of the MCS data. From the initial PSDM, we refine the FWI background velocity model by minimizing the residual move-outs (RMOs) picked in the pre-stack-migrated volume through slope tomography (ST), from which we generate a better-focused migrated image. Such integration of different seismic datasets and leading-edge imaging techniques led to greatly improved imaging at different scales. That is, large to intermediate crustal units identified in the high-resolution FWI velocity model extensively complement the short-wavelength reflectivity inferred from the MCS data to better constrain the structural factors controlling the geodynamics of the Nankai Trough

    Le traitement sismique sur la grille et sa communauté d'utilisateurs EGEODE

    Get PDF
    La communication concerne la thématique Sciences de la Terre, mais ni atmosphÚre, climat, hydrologie, ni sismologie stricto-sensuLe traitement sismique sur la grille et sa communauté d'utilisateurs EGEOD

    Multichannel Seismic Imaging of the Northern Andean subduction margin in Ecuador: preliminary seismic processing results from HIPER campaign

    No full text
    International audienceOffshore 2D-Multichannel seismic (MCS)-reflection profiles were acquired in northern Ecuador during the HIPER survey (March/April 2020, R/V L’Atalante) together with one 2D-OBS-seismicrefraction profile (presented in a joint abstract by A. Skrubej). This project (presented in a joint abstract by A. Galve) aims at deciphering the role of lower plate structural heterogeneities and fluids on subduction zone seismogenesis processes within the 2016 Pedernales rupture segment, which is characterized by contrasting slip behaviors. We put a particular emphasis on the segment located at the northern termination of the subducting Carnegie Ridge which was devoid of previous seismic investigations. Three lines of 315-km-long in total, one North of the 2016 Pedernales rupture zone sampling an area experiencing aseismic slip and two lines parallel to the trench, were recorded using an airgun source of 4990 in3 and a 6-km-long streamer. In this study, we present in detail the seismic processing workflow used to produce an enhanced imaging of the Ecuadorian margin, a prerequisite for tackling the project’s objectives. We performed routine MCS data processing onboard to produce post-stack time migrated sections using Geovation¼ CGG’s software. The dip-line collected across the northern Atacames seamounts area provides a detailed image through the whole Nazca oceanic crust down to the Moho, showing a normal crust thickness, at least on the oceanward portion, up to 15 km to the west of the trench. At the trench, we image a horst-like basement topographic high, which outcrops at sea-bottom, offsets the deformation front arcwards, with the outcropping frontal decollement reflector topping this oceanic basement high. Its nature, fluid content potential and lateral extent need to be determined, but its observation at the shallow portion of the interplate megathrust contribute to expand the inventory of subducting rough structures possibly impacting the megathrust frictional slip behavior. Further advanced processing include noise attenuation, 2D-SRME multiple attenuation, Kirchhoff pre-stack time migration and preserved amplitude pre-stack depth migration (PSDM) performed in the angle domain. The megathrust fault located at the top of the subducting oceanic crust is imaged down to 7 km depth at a distance of 28 km from the trench which will contribute to complement the high-resolution version of the slab’s top topography close to the trench. A joint analyze of this MCS line and the coincident 2D-OBS refraction Vp model, reveal that variations in moho acoustic features at 15 km distance to the west of the trench correlates with a 30 km wide and >10 km-thick low Vp anomaly. Nearby previous experiment SISTEUR seismic lines are being reprocessed using the same workflow, in order to further investigate the deep crustal seismic structures over the Pedernales 2016 rupture zone

    Pre-stack depth Migration imaging of the Hellenic Subduction Zone

    No full text
    International audienceIn 365 AD, a major M>8-tsunamignic earthquake occurred along the southwestern segment of the Hellenic subduction zone. Although this is the largest seismic event ever reported in Europe, some fundamental questions remain regarding the deep geometry of the interplate megathrust, as well as other faults within the overriding plate potentially connected to it. The main objective here is to image those deep structures, whose depths range between 15 and 45 km, using leading edge seismic reflection equipment. To this end, a 210-km-long multichannel seismic profile was acquired with the 8 km-long streamer and the 6600 cu.in source of R/V Marcus Langseth. This was realized at the end of 2015, during the SISMED cruise. This survey was made possible through a collective effort gathering labs (GĂ©oazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Dpt. Geosciences of Pau Univ). A preliminary processing sequence has first been applied using Geovation software of CGG, which yielded a post-stack time migration of collected data, as well as pre-stack time migration obtained with a model derived from velocity analyses. Using Paradigm software, a pre-stack depth migration was subsequently carried out. This step required some tuning in the pre-processing sequence in order to improve multiple removal, noise suppression and to better reveal the true geometry of reflectors in depth. This iteration of pre-processing included, the use of parabolic Radon transform, FK filtering and time variant band pass filtering. An initial velocity model was built using depth-converted RMS velocities obtained from SISMED data for the sedimentary layer, complemented at depth with a smooth version of the tomographic velocities derived from coincident wide-angle data acquired during the 2012-ULYSSE survey. Then, we performed a Kirchhoff Pre-stack depth migration with traveltimes calculated using the Eikonal equation. Velocity model were then tuned through residual velocity analyses to flatten reflections in common reflection point gathers. These new results improve the imaging of deep reflectors and even reveal some new features. We will present this work, a comparison with our previously obtained post-stack time migration, as well as some insights into the new geological structures revealed by the depth imaging

    Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    No full text
    International audienceThe southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (GĂ©oazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here, we will present the preliminary results of the newly acquired high-quality, high-resolution and deep-penetration data and we will provide a comparison of the two datasets collected with different acquisition parameters

    Pervasive compression and deep structure of the Hellenic subduction forearc, west of Crete, revealed by penetrative long offset multichannel seismic data

    No full text
    International audienceThe Hellenic subduction system exhibits a fairly atypical structure, resulting from the intense radial extension undergone by the Aegean domain from Eocene to Miocene. It features a very wide fore-arc, that itself includes an external non-volcanic arc between southeastern Peloponnesus and southwestern Anatolia, with Crete occupying a frontal position midway along it. South of it, separated from the Aegean domain by a large escarpment, the Hellenic trenches marking the most advanced position of the forearc Alpine nappes and the wide abutting accretionary wedge are found. The Hellenic subduction is widely regarded as poorly coupled from historical seismicity. Yet, a large tsunamigenic destructive event is reported in 365 CE just west of Crete, for which various rupture processes are proposed. In order to gain better insight into the structures of this major event, some deep penetrating seismic acquisition was performed in 2015 during the SISMED project, using the leading-edge equipment of R/V Marcus Langseth along a 210 km profile crossing through the fore-arc; an 8 km-long streamer and a voluminous source were used. Pre-stack depth imaging was applied to the recorded data set, with a strong effort to build a reliable velocity model using common image focusing analysis, both in the time and depth domains. Good imaging conditions thus were reached down to a maximum depth of 25 km. From south to north, our results reveal that: (1) a 6-7 km-thick oceanic crust with hints of compressive deformation enters the subduction, carrying no sediment past the backstop; (2) it crosses the continental Moho as shallow as 13 km depth; (3) above, a set of reactivated antithetic reverse faults controlling the Matapan forearc basin is clearly imaged; (4) no evidence is found supporting a speculated inverse splay fault outcropping at the toe of the Hellenic scarp and tentatively related to the 365 CE event; (5) some steep faulting is observed at mid-escarpment, whose downward continuation coincides with a jump in the forearc Moho’s depth, and that likely accommodates some of the required dextral strike slip partitioning motion; (6) possible clues are found for some compressive reactivation of the Maleas basin, north of the external arc

    A review of strain partitioning in the Northern Lesser Antilles (Guadeloupe to Virgin Island).

    No full text
    International audienceAlong the convex Northern Lesser Antilles margin, plate convergence obliquity increases northward resulting in subduction normal to the trench to the west of Guadeloupe and highly oblique (>75°) to the North of Virgin Island. In this context, tectonic structures related to strain partitioning has long been debated, but are still poorly imaged. In particular, it was proposed that~800x300km Northern Lesser Antilles Forearc sliver, bounded by a lithospheric strike-slip fault in the volcanic arc moves independently northward as a block distinct from the Caribbean Plate. However, tectonic limits for this major sliver remain poorly imaged. Geophysical data acquired during the ANTITHESIS cruises, which aim at investigating tectonic deformation related to strain partitioning, depict a different pattern.1- At the Southern limit of the Puerto-Rico – Virgin Island margin segment the ~400-km-long E-W trending left-lateral Anegada Passage strike slip system is likely to be related to strain partitioning, although lateral motion is very slow. 2- To the South, in the Northern Lesser Antilles margin segment, en-echelon short transtensional faults along the volcanic arc are interpreted as the expression of strain partitioning. This system differs from lithospheric scale, continuous strike-slip systems such as the Great Sumatran Fault, the Median Tectonic Line in Nankai and the Philippine fault. En-echelon systems are typical of early stages of strike-slip deformation before coalescing in mature strike-slip fault.3- At the front of these margin segments, the ~850-km long sinistral strike-slip Bunce Fault extends to 18.5°N and develops along the mechanical discontinuity between the 20-30-km-wide sedimentary wedge and a more rigid backstop. This strike-slip system anastomoses southward within the accretionary prism where the sharp increase in convergence obliquity possibly acts as a mechanical threshold.Thus, the absence of crustal-scale, long-term strike-slip tectonic system in the arc and the fore-arc, south of the Anegada Passage, casts doubts onto strain partitioning in the Northern Lesser Antilles forearc. Plate motion could be mostly unpartitioned south of the Anegada Passage or taken up along pervasive short systems in a more diffuse pattern at margin scale, possibly owing to low interplate friction or lesser obliquity
    • 

    corecore