57 research outputs found

    Of autoregressive continuous time model parameters estimation

    Get PDF
    This article revisits a sequential approach to the estimation of the parameter in a first-order autoregressive model (AR(1)) with continuous time. There is provided a numerical study to get a results of sequential estimations of the parameter in first-order autoregressive model with continuous time and is computed a stopping rule and the optimal time of observations. Also there is provided a comparing analysis of estimation results with using the sequential approach both the optimal time of observations

    MTSS1 is a critical epigenetically regulated tumor suppressor in CML

    Get PDF
    Chronic myeloid leukemia (CML) is driven by malignant stem cells that can persist despite therapy. We have identified Metastasis suppressor 1 (Mtss1/MIM) to be downregulated in hematopoietic stem and progenitor cells from leukemic transgenic SCLtTA/Bcr-Abl mice and in patients with CML at diagnosis, and Mtss1 was restored when patients achieved complete remission. Forced expression of Mtss1 decreased clonogenic capacity and motility of murine myeloid progenitor cells and reduced tumor growth. Viral transduction of Mtss1 into lineage depleted SCLtTA/Bcr-Abl bone marrow cells decreased leukemic cell burden in recipients, and leukemogenesis was reduced upon injection of Mtss1 overexpressing murine myeloid 32D cells. Tyrosine kinase inhibitor (TKI) therapy and reversion of Bcr-Abl expression increased Mtss1 expression but failed to restore it to control levels. CML patient samples revealed higher DNA methylation of specific Mtss1 promoter CpG sites that contain binding sites for Kaiso and Rest transcription factors. In summary, we identified a novel tumor suppressor in CML stem cells that is downregulated by both Bcr-Abl kinase-dependent and -independent mechanisms. Restored Mtss1 expression markedly inhibits primitive leukemic cell biology in vivo, providing a therapeutic rationale for the Bcr-Abl-Mtss1 axis to target TKI resistant CML stem cells in patients

    Targeting quiescent leukemic stem cells using second generation autophagy inhibitors

    Get PDF
    In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin−Sca-1+c-kit+CD48−CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    Computational analysis of the evolutionarily conserved Missing In Metastasis/Metastasis Suppressor 1 gene predicts novel interactions, regulatory regions and transcriptional control

    Get PDF
    Missing in Metastasis (MIM), or Metastasis Suppressor 1 (MTSS1), is a highly conserved protein, which links the plasma membrane to the actin cytoskeleton. MIM has been implicated in various cancers, however, its modes of action remain largely enigmatic. Here, we performed an extensive in silico characterisation of MIM to gain better understanding of its function. We detected previously unappreciated functional motifs including adaptor protein (AP) complex interaction site and a C-helix, pointing to a role in endocytosis and regulation of actin dynamics, respectively. We also identified new functional regions, characterised with phosphorylation sites or distinct hydrophilic properties. Strong negative selection during evolution, yielding high conservation of MIM, has been combined with positive selection at key sites. Interestingly, our analysis of intra-molecular co-evolution revealed potential regulatory hotspots that coincided with reduced potentially\ua0pathogenic polymorphisms. We explored databases for the mutations and expression levels of MIM in cancer. Experimentally, we focused on chronic lymphocytic leukaemia (CLL), where MIM showed high overall expression, however, downregulation on poor prognosis samples. Finally, we propose strong conservation of MTSS1 also on the transcriptional level and predict novel transcriptional regulators. Our data highlight important targets for future studies on the role of MIM in different tissues and cancers

    Intracellular retention of ABL kinase inhibitors determines commitment to apoptosis in CML cells

    Get PDF
    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by highdose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs.Daniel B. Lipka, Marie-Christine Wagner, Marek Dziadosz, Tina Schnöder, Florian Heidel, Mirle Schemionek, Junia V. Melo, Thomas Kindler, Carsten Müller-Tidow, Steffen Koschmieder and Thomas Fische
    corecore