131 research outputs found

    Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes

    Get PDF
    Hen egg-white lysozyme has long been the paradigm for enzymatic glycosyl hydrolysis with retention of configuration, with a protonated carboxylic acid and a deprotonated carboxylate participating in general acid-base catalysis. In marked contrast, the retaining chitin degrading enzymes from glycosyl hydrolase families 18 and 20 all have a single glutamic acid as the catalytic acid but lack a nucleophile on the enzyme. Both families have a catalytic (βα)8-barrel domain in common. X-ray structures of three different chitinolytic enzymes complexed with substrates or inhibitors identify a retaining mechanism involving a protein acid and the carbonyl oxygen atom of the substrate’s C2 N-acetyl group as the nucleophile. These studies unambiguously demonstrate the distortion of the sugar ring toward a sofa conformation, long postulated as being close to that of the transition state in glycosyl hydrolysis.

    The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at Low-temperature Gas-phase Formation

    Get PDF
    Formaldehyde (H₂CO) is an important precursor to organics like methanol (CH₃OH). It is important to understand the conditions that produce H₂CO and prebiotic molecules during star and planet formation. H₂CO possesses both gas-phase and solid-state formation pathways, involving either UV-produced radical precursors or CO ice and cold ( 20 K) dust grains. To understand which pathway dominates, gaseous H₂CO's ortho-to-para ratio (OPR) has been used as a probe, with a value of 3 indicating "warm" conditions and <3 linked to cold formation in the solid state. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of multiple ortho- and para-H₂CO transitions in the TW Hya protoplanetary disk to test H₂CO formation theories during planet formation. We find disk-averaged rotational temperatures and column densities of 33 ± 2 K, (1.1 ± 0.1) × 10¹² cm⁻² and 25 ± 2 K, (4.4 ± 0.3) × 10¹¹ cm⁻² for ortho- and para-H₂CO, respectively, and an OPR of 2.49 ± 0.23. A radially resolved analysis shows that the observed H₂CO emits mostly at rotational temperatures of 30–40 K, corresponding to a layer with z/R ≥ 0.25. The OPR is consistent with 3 within 60 au, the extent of the pebble disk, and decreases beyond 60 au to 2.0 ± 0.5. The latter corresponds to a spin temperature of 12 K, well below the rotational temperature. The combination of relatively uniform emitting conditions, a radial gradient in the OPR, and recent laboratory experiments and theory on OPR ratios after sublimation, led us to speculate that gas-phase formation is responsible for the observed H₂CO across the TW Hya disk

    The TW Hya Rosetta Stone Project. I. Radial and Vertical Distributions of DCN and DCO⁺

    Get PDF
    Molecular D/H ratios are frequently used to probe the chemical past of solar system volatiles. Yet it is unclear which parts of the solar nebula hosted an active deuterium fractionation chemistry. To address this question, we present 0farcs2–0farcs4 Atacama Large Millimeter/submillimeter Array (ALMA) observations of DCO⁺ and DCN 2–1, 3–2, and 4–3 toward the nearby protoplanetary disk around TW Hya, taken as part of the TW Hya Rosetta Stone project, augmented with archival data. DCO⁺ is characterized by an excitation temperature of ~40 K across the 70 au radius pebble disk, indicative of emission from a warm, elevated molecular layer. Tentatively, DCN is present at even higher temperatures. Both DCO⁺ and DCN present substantial emission cavities in the inner disk, while in the outer disk the DCO⁺ and DCN morphologies diverge: most DCN emission originates from a narrow ring peaking around 30 au, with some additional diffuse DCN emission present at larger radii, while DCO⁺ is present in a broad structured ring that extends past the pebble disk. Based on a set of simple parametric disk abundance models, these emission patterns can be explained by a near-constant DCN abundance exterior to the cavity, and an increasing DCO⁺ abundance with radius. In conclusion, the ALMA observations reveal an active deuterium fractionation chemistry in multiple disk regions around TW Hya, but not in the cold planetesimal-forming midplane and in the inner disk. More observations are needed to explore whether deuterium fractionation is actually absent in these latter regions, and if its absence is a common feature or something peculiar to the old TW Hya disk

    Arterivirus Nsp1 Modulates the Accumulation of Minus-Strand Templates to Control the Relative Abundance of Viral mRNAs

    Get PDF
    The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the genomic mRNA, as well as synthesis of subgenomic (sg) mRNAs. Arteriviruses and coronaviruses, distantly related members of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-length templates for the synthesis of a nested set of sg mRNAs. Non-structural protein 1 (nsp1) of the arterivirus equine arteritis virus (EAV), a multifunctional regulator of viral RNA synthesis and virion biogenesis, was previously implicated in controlling the balance between genome replication and sg mRNA synthesis. Here, we employed reverse and forward genetics to gain insight into the multiple regulatory roles of nsp1. Our analysis revealed that the relative abundance of viral mRNAs is tightly controlled by an intricate network of interactions involving all nsp1 subdomains. Distinct nsp1 mutations affected the quantitative balance among viral mRNA species, and our data implicate nsp1 in controlling the accumulation of full-length and subgenome-length minus-strand templates for viral mRNA synthesis. The moderate differential changes in viral mRNA abundance of nsp1 mutants resulted in similarly altered viral protein levels, but progeny virus yields were greatly reduced. Pseudorevertant analysis provided compelling genetic evidence that balanced EAV mRNA accumulation is critical for efficient virus production. This first report on protein-mediated, mRNA-specific control of nidovirus RNA synthesis reveals the existence of an integral control mechanism to fine-tune replication, sg mRNA synthesis, and virus production, and establishes a major role for nsp1 in coordinating the arterivirus replicative cycle

    A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions

    Get PDF
    Contains fulltext : 87422.pdf (publisher's version ) (Closed access)BACKGROUND: Informed consent (IC) is a process requiring a competent doctor, adequate transfer of information, and consent of the patient. It is not just a signature on a piece of paper. Current consent processes in surgery are probably outdated and may require major changes to adjust them to modern day legislation. A literature search may provide an opportunity for enhancing the quality of the surgical IC (SIC) process. METHODS: Relevant English literature obtained from PubMed, Picarta, PsycINFO, and Google between 1993 and 2009 was reviewed. RESULTS: The body of literature with respect to SIC is slim and of moderate quality. The SIC process is an underestimated part of surgery and neither surgeons nor patients sufficiently realize its importance. Surgeons are not specifically trained and lack the competence to guide patients through a legally correct SIC process. Computerized programs can support the SIC process significantly but are rarely used for this purpose. CONCLUSIONS: IC should be integrated into our surgical practice. Unfortunately, a big gap exists between the theoretical/legal best practice and the daily practice of IC. An optimally informed patient will have more realistic expectations regarding a surgical procedure and its associated risks. Well-informed patients will be more satisfied and file fewer legal claims. The use of interactive computer-based programs provides opportunities to improve the SIC process.1 juli 201
    corecore