427 research outputs found

    Randomized trial of conventional transseptal needle versus radiofrequency energy needle puncture for left atrial access (the TRAVERSE-LA study).

    Get PDF
    BackgroundTransseptal puncture is a critical step in achieving left atrial (LA) access for a variety of cardiac procedures. Although the mechanical Brockenbrough needle has historically been used for this procedure, a needle employing radiofrequency (RF) energy has more recently been approved for clinical use. We sought to investigate the comparative effectiveness of an RF versus conventional needle for transseptal LA access.Methods and resultsIn this prospective, single-blinded, controlled trial, 72 patients were randomized in a 1:1 fashion to an RF versus conventional (BRK-1) transseptal needle. In an intention-to-treat analysis, the primary outcome was time required for transseptal LA access. Secondary outcomes included failure of the assigned needle, visible plastic dilator shavings from needle introduction, and any procedural complication. The median transseptal puncture time was 68% shorter using the RF needle compared with the conventional needle (2.3 minutes [interquartile range {IQR}, 1.7 to 3.8 minutes] versus 7.3 minutes [IQR, 2.7 to 14.1 minutes], P = 0.005). Failure to achieve transseptal LA access with the assigned needle was less common using the RF versus conventional needle (0/36 [0%] versus 10/36 [27.8%], P < 0.001). Plastic shavings were grossly visible after needle advancement through the dilator and sheath in 0 (0%) RF needle cases and 12 (33.3%) conventional needle cases (P < 0.001). There were no differences in procedural complications (1/36 [2.8%] versus 1/36 [2.8%]).ConclusionsUse of an RF needle resulted in shorter time to transseptal LA access, less failure in achieving transseptal LA access, and fewer visible plastic shavings

    Decentralized motion planning for multiple mobile robots: The cocktail party model

    Get PDF
    Abstract. This paper presents an approach for decentralized real-time motion planning for multiple mobile robots operating in a common 2-dimensional environment with unknown stationary obstacles. In our model, a robot can see (sense) the surrounding objects. It knows its current and its target’s position, is able to distinguish a robot from an obstacle, and can assess the instantaneous motion of another robot. Other than this, a robot has no knowledge about the scene or of the paths and objectives of other robots. There is no mutual communication among the robots; no constraints are imposed on the paths or shapes of robots and obstacles. Each robot plans its path toward its target dynamically, based on its current position and the sensory feedback; only the translation component is considered for the planning purposes. With this model, it is clear that no provable motion planning strategy can be designed (a simple example with a dead-lock is discussed); this naturally points to heuristic algorithms. The suggested strategy is based on maze-searching techniques. Computer simulation results are provided that demonstrate good performance and a remarkable robustness of the algorithm (meaning by this a virtual impossibility to create a dead-lock in a “random ” scene). Keywords: mobile robots, autonomous agents, decentralized intelligence, robot motion plannin

    The echo-transponder electrode catheter: A new method for mapping the left ventricle

    Get PDF
    AbstractThe ability to locate catheter position in the left ventricle with respect to endocardial landmarks might enhance the accuracy of ventricular tachycardia mapping. An echotransponder system (Telectronics, Inc.) was compared with biplane fluoroscopy for left ventricular endocardial mapping. A 6F electrode catheter was modified with the addition of a piezoelectric crystal 5 mm from the tip. This crystal was connected to a transponder that received and transmitted ultrasound, resulting in a discrete artifact on the two-dimensional echocardiographic image corresponding to the position of the catheter tip.Catheters were introduced percutaneously into the left ventricle of nine anesthetized dogs. Two-dimensional echotransponder and biplane fluoroscopic images were recorded on videotape with the catheter at multiple endocardial sites. Catheter location was marked by delivering radiofrequency current to the distal electrode, creating a small endocardial lesion. Catheter location by echo-transponder and by fluoroscopy were compared with lesion location without knowledge of other data. Location by echo-transponder was 8.7 ± 5.1 mm from the center of the radiofrequency lesion versus 14 + 7.8 mm by fluoroscopy (n = 15, p = 0.023). Echo-transponder localization is more precise than is biplane fluoroscopy and may enhance the accuracy of left ventricular eledrophysiologic mapping

    LEDGF1-326 Decreases P23H and Wild Type Rhodopsin Aggregates and P23H Rhodopsin Mediated Cell Damage in Human Retinal Pigment Epithelial Cells

    Get PDF
    P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF(1-326), a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage.ARPE-19 cells were transiently transfected/cotransfected with pLEDGF(1-326) and/or pWT-Rho (wild type)/pP23H-Rho. Rhodopsin mediated cellular damage and rescue by LEDGF(1-326) was assessed using cell viability, cell proliferation, and confocal microscopy assays. Rhodopsin monomers, oligomers, and their reduction in the presence of LEDGF(1-326) were quantified by western blot analysis. P23H rhodopsin mRNA levels in the presence and absence of LEDGF(1-326) was determined by real time quantitative PCR.P23H rhodopsin reduced RPE cell viability and cell proliferation in a dose dependent manner, and disrupted the nuclear material. LEDGF(1-326) did not alter P23H rhodopsin mRNA levels, reduced its oligomers, and significantly increased RPE cell viability as well as proliferation, while reducing nuclear damage. WT rhodopsin formed oligomers, although to a smaller extent than P23H rhodopsin. Further, LEDGF(1-326) decreased WT rhodopsin aggregates.P23H rhodopsin as well as WT rhodopsin form aggregates in RPE cells and LEDGF(1-326) decreases these aggregates. Further, LEDGF(1-326) reduces the RPE cell damage caused by P23H rhodopsin. LEDGF(1-326) might be useful in treating cellular damage associated with protein aggregation diseases such as retinitis pigmentosa

    Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-Induced Suppression of Cytokine Production

    Get PDF
    BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin

    Desmosomal COP9 regulates proteome degradation in arrhythmogenic right ventricular dysplasia/cardiomyopathy.

    Get PDF
    Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease, arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here we uncovered a cardiac COP9 desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels and function were impacted in hearts of classic mouse and human models of ARVD/C impacted by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to CSN6 loss and human desmosomal mutations destabilizing CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease

    Sensorineural correlates of failed functional recovery after natural regeneration of vestibular hair cells in adult mice

    Get PDF
    Vestibular hair cells (HCs) are mechanoreceptors that sense head motions by modulating the firing rate of vestibular ganglion neurons (VGNs), whose central processes project to vestibular nucleus neurons (VNNs) and cerebellar neurons. We explored vestibular function after HC destruction in adult Pou4f3+/DTR (DTR) mice, in which injections of high-dose (50 ng/g) diphtheria toxin (DT) destroyed most vestibular HCs within 2 weeks. At that time, DTR mice had lost the horizontal vestibulo-ocular reflex (aVORH), and their VNNs failed to upregulate nuclear cFos expression in response to a vestibular stimulus (centrifugation). Five months later, 21 and 14% of HCs were regenerated in utricles and horizontal ampullae, respectively. The vast majority of HCs present were type II. This degree of HC regeneration did not restore the aVORH or centrifugation-evoked cFos expression in VNNs. The failure to regain vestibular pathway function was not due to degeneration of VGNs or VNNs because normal neuron numbers were maintained after HC destruction. Furthermore, sinusoidal galvanic stimulation at the mastoid process evoked cFos protein expression in VNNs, indicating that VGNs were able to regulate VNN activity after HC loss. aVORH and cFos responses in VNNs were robust after low-dose (25 ng/g) DT, which compared to high-dose DT resulted in a similar degree of type II HC death and regeneration but spared more type I HCs in both organs. These findings demonstrate that having more type I HCs is correlated with stronger responses to vestibular stimulation and suggest that regenerating type I HCs may improve vestibular function after HC loss

    Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal \u3b2-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and \u3b2-catenin. A pharmacological activator of the WNT/\u3b2-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and \u3b2-catenin, and evidence for targeted activation of the WNT/\u3b2-catenin pathway as a potential treatment for this disease
    • …
    corecore