804 research outputs found
Crossover from Single-Ion to Coherent Non-Fermi Liquid Behavior in CeLaNiGe
We report specific heat and magneto-resistance studies on the compound
CeLaNiGe for various concentrations over the entire
stoichiometric range. Our data reveal single-ion scaling with Ce-concentration
between and 0.95. Furthermore, CeNiGe turns out to have
the largest ever recorded value of the electronic specific heat 5.5 J at K which was found in Cerium
f-electron lattice systems. In the doped samples increases
logarithmically in the temperature range between 3 K and 50 mK typical for
non-Fermi liquid (nFl) behavior, while exhibits a Kondo-like minimum
around 30 K, followed by a single-ion local nFl behavior. In contrast to this,
CeNiGe flattens out in below 300 mK and displays a
pronounced maximum in the resistivity curve at 1.5 K indicating a coherent
heavy fermion groundstate. These properties render the compound
CeLaNiGe a unique system on the borderline between
Fermi liquid and nFl physics.Comment: 2 pages, 3 figures, SCES0
Antiferromagnetic behavior in CeCoGe
We investigate the novel intermetallic ternary compounds
\emph{R}CoGe with \emph{R} = La and Ce by means of -ray
diffraction, susceptibility and specific heat measurements. CeCoGe
crystallizes in the space group 4/ and is characterized by the
coexistence of two different magnetic sublattices. The Ce-based sublattice,
with an effective moment close to the expected value for a Ce-ion,
exhibits a magnetically ordered ground state with K. The
Co-based sublattice, however, exhibits magnetic moments due to itinerant 3
electrons. The magnetic specific heat contribution of the Ce-sublattice is
discussed in terms of a resonance-level model implying the interplay between an
antiferromagnetic phase transition and the Kondo-effect and an underlying
Schottky-anomaly indicating a crystal field level scheme splitting into three
twofold degenerated micro states ( K, K).Comment: 4 pages, 3 figures, conference SCES0
Possible indicators for low dimensional superconductivity in the quasi-1D carbide Sc3CoC4
The transition metal carbide Sc3CoC4 consists of a quasi-one-dimensional (1D)
structure with [CoC4]_{\inft} polyanionic chains embedded in a scandium
matrix. At ambient temperatures Sc3CoC4 displays metallic behavior. At lower
temperatures, however, charge density wave formation has been observed around
143K which is followed by a structural phase transition at 72K. Below T^onset_c
= 4.5K the polycrystalline sample becomes superconductive. From Hc1(0) and
Hc2(0) values we could estimate the London penetration depth ({\lambda}_L ~=
9750 Angstroem) and the Ginsburg-Landau (GL) coherence length ({\xi}_GL ~= 187
Angstroem). The resulting GL-parameter ({\kappa} ~= 52) classifies Sc3CoC4 as a
type II superconductor. Here we compare the puzzling superconducting features
of Sc3CoC4, such as the unusual temperature dependence i) of the specific heat
anomaly and ii) of the upper critical field H_c2(T) at T_c, and iii) the
magnetic hysteresis curve, with various related low dimensional
superconductors: e.g., the quasi-1D superconductor (SN)_x or the 2D
transition-metal dichalcogenides. Our results identify Sc3CoC4 as a new
candidate for a quasi-1D superconductor.Comment: 4 pages, 5 figure
Competing magnetic interactions in CeNi9-xCoxGe4
CeNi9Ge4 exhibits outstanding heavy fermion features with remarkable
non-Fermi- liquid behavior which is mainly driven by single-ion effects. The
substitution of Ni by Cu causes a reduction of both, the RKKY coupling and
Kondo interaction, coming along with a dramatic change of the crystal field
(CF) splitting. Thereby a quasi-quartet ground state observed in CeNi9Ge4
reduces to a two-fold degenerate one in CeNi8CuGe4. This leads to a
modiffcation of the effective spin degeneracy of the Kondo lattice ground state
and to the appearance of antiferromagnetic (AFM) order. To obtain a better
understanding of consequences resulting from a reduction of the effective spin
degeneracy, we stepwise replaced Ni by Co. Thereby an increase of the Kondo and
RKKY interactions through the reduction of the effective d-electron count is
expected. Accordingly, a paramagnetic Fermi liquid ground state should arise.
Our experimental studies, however, reveal AFM order already for small Co
concentrations, which becomes even more pronounced with increasing Co content
x. Thereby the modiffcation of the effective spin degeneracy seems to play a
crucial role in this system
Unusual Non-Fermi Liquid Behavior of CeLaNiGe Analyzed in a Single Impurity Anderson Model with Crystal Field Effects
CeNiGe exhibits unusual non-Fermi liquid behavior with the largest
ever recorded value of the electronic specific heat
JKmol without showing any evidence of magnetic order. Specific
heat measurements show that the logarithmic increase of the Sommerfeld
coefficient flattens off below 200 mK. In marked contrast, the local
susceptibility levels off well above 200 mK and already becomes
constant below 1 K. Furthermore, the entropy reaches 2ln2 below 20 K
corresponding to a four level system. An analysis of and was
performed in terms of an single impurity Anderson model with
additional crystal electric field (CEF) splitting. Numerical renormalization
group calculations point to a possible consistent description of the different
low temperature scales in and stemming from the
interplay of Kondo effect and crystal field splitting.Comment: 2 pages, 2 figure
Possible canted antiferromagnetism in UCuSn
We report on the new compound UCuSn which crystallizes in the
tetragonal structure \emph{I}4/\emph{mcm} with lattice parameters and . This compound is isotyp to the
ferromagnetic systems RECuSn (RE = Ce, Pr, Nd) with Curie
temperatures = 5.5 K, 10.5 K and 15 K, respectively.
UCuSn exhibits an uncommon magnetic behavior resulting in three
different electronic phase transitions. Below 105 K the sample undergoes a
valence transition accompanied by an entropy change of 0.5 Rln2. At 32 K a
small hump in the specific heat and a flattening out in the susceptibility
curve probably indicate the onset of helical spin order. To lower temperatures
a second transition to antiferromagnetic ordering occurs which develops a small
ferromagnetic contribution on lowering the temperature further. These results
are strongly hinting for canted antiferromagnetism in UCuSn.Comment: 2 pages, 3 figures, SCES0
Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x
UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type,
over a wide range of concentrations from x = 0 to at least x = 2.5. All
investigated alloys, with an exception for x = 2.5, were non-magnetic. Their
electronic specific heat coefficient varies from about 60 (x = 2) to
about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a
Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of
T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in
comparison with normal and transition metals. It changes from about 0.01 (x =
0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to
have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5)
to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of
transition metals to that found for some other heavy-fermion metals. This ratio
is unaffected, or only weakly affected, by chemical or crystallographic
disorder. It correlates with the paramagnetic Curie-Weiss temperature of the
high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe
Thermoelectric properties of Zn_5Sb_4In_(2-δ)(δ=0.15)
The polymorphic intermetallic compound Zn_5Sb_4In_(2−δ) (δ = 0.15(3)) shows promising thermoelectric properties at low temperatures, approaching a figure of merit ZT of 0.3 at 300 K. However, thermopower and electrical resistivity changes discontinuously at around 220 K. Measurement of the specific heat locates the previously unknown temperature of the order-disorder phase transition at around 180 K. Investigation of the charge carrier concentration and mobility by Hall measurements and infrared reflection spectroscopy indicate a mixed conduction behavior and the activation of charge carriers at temperatures above 220 K. Zn_5Sb_4In_(2−δ) has a low thermal stability, and at temperatures above 470 K samples decompose into a mixture of Zn, InSb, and Zn_4Sb_3
Evolution of Quantum Criticality in CeNi_{9-x}Cu_xGe_4
Crystal structure, specific heat, thermal expansion, magnetic susceptibility
and electrical resistivity studies of the heavy fermion system
CeNi_{9-x}Cu_xGe_4 (0 <= x <= 1) reveal a continuous tuning of the ground state
by Ni/Cu substitution from an effectively fourfold degenerate non-magnetic
Kondo ground state of CeNi_9Ge_4 (with pronounced non-Fermi-liquid features)
towards a magnetically ordered, effectively twofold degenerate ground state in
CeNi_8CuGe_4 with T_N = 175 +- 5 mK. Quantum critical behavior, C/T ~ \chi ~
-ln(T), is observed for x about 0.4. Hitherto, CeNi_{9-x}Cu_xGe_4 represents
the first system where a substitution-driven quantum phase transition is
connected not only with changes of the relative strength of Kondo effect and
RKKY interaction, but also with a reduction of the effective crystal field
ground state degeneracy.Comment: 15 pages, 9 figure
- …