356 research outputs found

    Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle

    Full text link
    We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling

    Multiscale Modeling of a Nanoelectromechanical Shuttle

    Full text link
    In this article, we report a theoretical analysis of a nanoelectromechanical shuttle based on a multiscale model that combines microscopic electronic structure data with macroscopic dynamics. The microscopic part utilizes a (static) density functional description to obtain the energy levels and orbitals of the shuttling particle together with the forces acting on the particle. The macroscopic part combines stochastic charge dynamics that incorporates the microscopically evaluated tunneling rates with a Newtonian dynamics. We have applied the multiscale model to describe the shuttling of a single copper atom between two gold-like jellium electrodes. We find that energy spectrum and particle surface interaction greatly influence shuttling dynamics; in the specific example that we studied the shuttling is found to involve only charge states Q=0 and Q=+e. The system is found to exhibit two quasi-stable shuttling modes, a fundamental one and an excited one with a larger amplitude of mechanical motion, with random transitions between them.Comment: 9 pages, 9 figure

    Electromechanical instability in suspended carbon nanotubes

    Full text link
    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system

    Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis

    Get PDF
    The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO2]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle

    Low frequency current noise of the single-electron shuttle

    Get PDF
    Coupling between electronic and mechanical degrees of freedom in a single electron shuttle system can cause a mechanical instability leading to shuttle transport of electrons between external leads. We predict that the resulting low frequency current noise can be enhanced due to amplitude fluctuations of the shuttle oscillations. Moreover, at the onset of mechanical instability a pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis

    Non-Equilibrium and Quantum Coherent Phenomena in the Electromechanics of Suspended Nanowires

    Get PDF
    Strong coupling between electronic and mechanical degrees of freedom is a basic requirement for the operation of any nanoelectromechanical device. In this Review we consider such devices and in particular investigate the properties of small tunnel-junction nanostructures that contain a movable element in the form of a suspended nanowire. In these systems, electrical current and charge can be concentrated to small spatial volumes resulting in strong coupling between the mechanics and the charge transport. As a result, a variety of mesoscopic phenomena appear, which can be used for the transduction of electrical currents into mechanical operation. Here we will in particular consider nanoelectromechanical dynamics far from equilibrium and the effect of quantum coherence in both the electronic and mechanical degrees of freedom in the context of both normal and superconducting nanostructures.Comment: 20 pages, 13 figures, figures update

    Real time data analytics as applied to web-to-roller traction in manufacturing

    Get PDF
    Avoidance of web handling-related imperfections is often a challenge. As an example, the limit of web-to-roller traction is typically not detected until it is exceeded, resulting in product damage. Detection is often made through product inspection. This delay can result in a large volume of unacceptable material being produced. Inclusion of roller speed monitoring can greatly improve response time, but detection still takes place after failure has occurred.Avoidance of traction problems is normally approached by providing robust equipment design, although this ability is often limited by other machine layout limitations. Variables that can influence web-to-roller traction include: roller wrap angle, roller surface roughness, web surface roughness, bearing frictional drag, roller venting, boundary layer air volume, track-off of foreign materials onto roller surfaces, and wear of roller surfaces.Measurement of web-to-roller traction, often described as excess traction, requires a pre-determined amount of torque to be applied to the roller until the onset of slip. This paper describes an approach which incorporates one or more remote-actuated, machine-mounted prony brakes and a process monitoring (PM) system, which would permit rapid measurement of excess traction on a routinely-scheduled basis while running non-saleable material, enabling traction performance to be trended, and anticipating failures before they occur on saleable product.Incorporating targeted measurement data into a PM system will permit calculations and comparative controls to alarm when there is evidence of traction deterioration. This system provides machine learning algorithms to predict process deterioration and provide input to preventative maintenance scheduling

    Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways

    Get PDF
    The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways
    corecore