121 research outputs found
Simple models suffice for the single dot quantum shuttle
A quantum shuttle is an archetypical nanoelectromechanical device, where the
mechanical degree of freedom is quantized. Using a full-scale numerical
solution of the generalized master equation describing the shuttle, we have
recently shown [Novotn\'{y} {\it et al.}, Phys. Rev. Lett. {\bf 92}, 248302
(2004)] that for certain limits of the shuttle parameters one can distinguish
three distinct charge transport mechanisms: (i) an incoherent tunneling regime,
(ii) a shuttling regime, where the charge transport is synchronous with the
mechanical motion, and (iii) a coexistence regime, where the device switches
between the tunneling and shuttling regimes. While a study of the cross-over
between these three regimes requires the full numerics, we show here that by
identifying the appropriate time-scales it is possible to derive vastly simpler
equations for each of the three regimes. The simplified equations allow a clear
physical interpretation, are easily solved, and are in good agreement with the
full numerics in their respective domains of validity.Comment: 23 pages, 14 figures, invited paper for the Focus issue of the New
Journal of Physics on Nano-electromechanical system
Multiscale Modeling of a Nanoelectromechanical Shuttle
In this article, we report a theoretical analysis of a nanoelectromechanical
shuttle based on a multiscale model that combines microscopic electronic
structure data with macroscopic dynamics. The microscopic part utilizes a
(static) density functional description to obtain the energy levels and
orbitals of the shuttling particle together with the forces acting on the
particle. The macroscopic part combines stochastic charge dynamics that
incorporates the microscopically evaluated tunneling rates with a Newtonian
dynamics.
We have applied the multiscale model to describe the shuttling of a single
copper atom between two gold-like jellium electrodes. We find that energy
spectrum and particle surface interaction greatly influence shuttling dynamics;
in the specific example that we studied the shuttling is found to involve only
charge states Q=0 and Q=+e. The system is found to exhibit two quasi-stable
shuttling modes, a fundamental one and an excited one with a larger amplitude
of mechanical motion, with random transitions between them.Comment: 9 pages, 9 figure
Electromechanical instability in suspended carbon nanotubes
We have theoretically investigated electromechanical properties of freely
suspended carbon nanotubes when a current is injected into the tubes using a
scanning tunneling microscope. We show that a shuttle-like electromechanical
instability can occur if the bias voltage exceeds a dissipation-dependent
threshold value. An instability results in large amplitude vibrations of the
carbon nanotube bending mode, which modify the current-voltage characteristics
of the system
Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle
We demonstrate single electron shuttling through two coupled nanomechanical
pendula. The pendula are realized as nanopillars etched out of the
semiconductor substrate. Coulomb blockade is found at room temperature,
allowing metrological applications. By controlling the mechanical shuttling
frequency we are able to validate the different regimes of electron shuttling
Low frequency current noise of the single-electron shuttle
Coupling between electronic and mechanical degrees of freedom in a single
electron shuttle system can cause a mechanical instability leading to shuttle
transport of electrons between external leads. We predict that the resulting
low frequency current noise can be enhanced due to amplitude fluctuations of
the shuttle oscillations. Moreover, at the onset of mechanical instability a
pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl
Non-Equilibrium and Quantum Coherent Phenomena in the Electromechanics of Suspended Nanowires
Strong coupling between electronic and mechanical degrees of freedom is a
basic requirement for the operation of any nanoelectromechanical device. In
this Review we consider such devices and in particular investigate the
properties of small tunnel-junction nanostructures that contain a movable
element in the form of a suspended nanowire. In these systems, electrical
current and charge can be concentrated to small spatial volumes resulting in
strong coupling between the mechanics and the charge transport. As a result, a
variety of mesoscopic phenomena appear, which can be used for the transduction
of electrical currents into mechanical operation. Here we will in particular
consider nanoelectromechanical dynamics far from equilibrium and the effect of
quantum coherence in both the electronic and mechanical degrees of freedom in
the context of both normal and superconducting nanostructures.Comment: 20 pages, 13 figures, figures update
Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis
Humoral and Cell-Mediated Immunity to Pandemic H1N1 Influenza in a Canadian Cohort One Year Post-Pandemic: Implications for Vaccination
We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1) at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105) of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. Longitudinal analysis of a single infected individual showed only a small and transient increase in neutralizing antibody levels, but a robust CD8 T cell response that rose rapidly post symptom onset, peaking at 3 weeks, followed by a gradual decline to the baseline levels seen in a seroprevalence cohort post-pandemic. The magnitude of the influenza-specific CD8 T cell memory response at one year post-pandemic was similar in cases and controls as well as in vaccinated and unvaccinated donors, suggesting that any T cell boosting from infection was transient. Pandemic H1-specific antibodies were only detectable in approximately half of vaccinated donors. However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity
Cloning and Characterization of Maize miRNAs Involved in Responses to Nitrogen Deficiency
Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress
- …