120 research outputs found

    Simple models suffice for the single dot quantum shuttle

    Full text link
    A quantum shuttle is an archetypical nanoelectromechanical device, where the mechanical degree of freedom is quantized. Using a full-scale numerical solution of the generalized master equation describing the shuttle, we have recently shown [Novotn\'{y} {\it et al.}, Phys. Rev. Lett. {\bf 92}, 248302 (2004)] that for certain limits of the shuttle parameters one can distinguish three distinct charge transport mechanisms: (i) an incoherent tunneling regime, (ii) a shuttling regime, where the charge transport is synchronous with the mechanical motion, and (iii) a coexistence regime, where the device switches between the tunneling and shuttling regimes. While a study of the cross-over between these three regimes requires the full numerics, we show here that by identifying the appropriate time-scales it is possible to derive vastly simpler equations for each of the three regimes. The simplified equations allow a clear physical interpretation, are easily solved, and are in good agreement with the full numerics in their respective domains of validity.Comment: 23 pages, 14 figures, invited paper for the Focus issue of the New Journal of Physics on Nano-electromechanical system

    Multiscale Modeling of a Nanoelectromechanical Shuttle

    Full text link
    In this article, we report a theoretical analysis of a nanoelectromechanical shuttle based on a multiscale model that combines microscopic electronic structure data with macroscopic dynamics. The microscopic part utilizes a (static) density functional description to obtain the energy levels and orbitals of the shuttling particle together with the forces acting on the particle. The macroscopic part combines stochastic charge dynamics that incorporates the microscopically evaluated tunneling rates with a Newtonian dynamics. We have applied the multiscale model to describe the shuttling of a single copper atom between two gold-like jellium electrodes. We find that energy spectrum and particle surface interaction greatly influence shuttling dynamics; in the specific example that we studied the shuttling is found to involve only charge states Q=0 and Q=+e. The system is found to exhibit two quasi-stable shuttling modes, a fundamental one and an excited one with a larger amplitude of mechanical motion, with random transitions between them.Comment: 9 pages, 9 figure

    Electromechanical instability in suspended carbon nanotubes

    Full text link
    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system

    Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle

    Full text link
    We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling

    Low frequency current noise of the single-electron shuttle

    Get PDF
    Coupling between electronic and mechanical degrees of freedom in a single electron shuttle system can cause a mechanical instability leading to shuttle transport of electrons between external leads. We predict that the resulting low frequency current noise can be enhanced due to amplitude fluctuations of the shuttle oscillations. Moreover, at the onset of mechanical instability a pronounced peak in the low frequency noise is expected.Comment: 14 pages, 3 figures, 1 tabl

    Non-Equilibrium and Quantum Coherent Phenomena in the Electromechanics of Suspended Nanowires

    Get PDF
    Strong coupling between electronic and mechanical degrees of freedom is a basic requirement for the operation of any nanoelectromechanical device. In this Review we consider such devices and in particular investigate the properties of small tunnel-junction nanostructures that contain a movable element in the form of a suspended nanowire. In these systems, electrical current and charge can be concentrated to small spatial volumes resulting in strong coupling between the mechanics and the charge transport. As a result, a variety of mesoscopic phenomena appear, which can be used for the transduction of electrical currents into mechanical operation. Here we will in particular consider nanoelectromechanical dynamics far from equilibrium and the effect of quantum coherence in both the electronic and mechanical degrees of freedom in the context of both normal and superconducting nanostructures.Comment: 20 pages, 13 figures, figures update

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis

    Humoral and Cell-Mediated Immunity to Pandemic H1N1 Influenza in a Canadian Cohort One Year Post-Pandemic: Implications for Vaccination

    Get PDF
    We evaluated a cohort of Canadian donors for T cell and antibody responses against influenza A/California/7/2009 (pH1N1) at 8-10 months after the 2nd pandemic wave by flow cytometry and microneutralization assays. Memory CD8 T cell responses to pH1N1 were detectable in 58% (61/105) of donors. These responses were largely due to cross-reactive CD8 T cell epitopes as, for those donors tested, similar recall responses were obtained to A/California 2009 and A/PR8 1934 H1N1 Hviruses. Longitudinal analysis of a single infected individual showed only a small and transient increase in neutralizing antibody levels, but a robust CD8 T cell response that rose rapidly post symptom onset, peaking at 3 weeks, followed by a gradual decline to the baseline levels seen in a seroprevalence cohort post-pandemic. The magnitude of the influenza-specific CD8 T cell memory response at one year post-pandemic was similar in cases and controls as well as in vaccinated and unvaccinated donors, suggesting that any T cell boosting from infection was transient. Pandemic H1-specific antibodies were only detectable in approximately half of vaccinated donors. However, those who were vaccinated within a few months following infection had the highest persisting antibody titers, suggesting that vaccination shortly after influenza infection can boost or sustain antibody levels. For the most part the circulating influenza-specific T cell and serum antibody levels in the population at one year post-pandemic were not different between cases and controls, suggesting that natural infection does not lead to higher long term T cell and antibody responses in donors with pre-existing immunity to influenza. However, based on the responses of one longitudinal donor, it is possible for a small population of pre-existing cross-reactive memory CD8 T cells to expand rapidly following infection and this response may aid in viral clearance and contribute to a lessening of disease severity

    Cloning and Characterization of Maize miRNAs Involved in Responses to Nitrogen Deficiency

    Get PDF
    Although recent studies indicated that miRNAs regulate plant adaptive responses to nutrient deprivation, the functional significance of miRNAs in adaptive responses to nitrogen (N) limitation remains to be explored. To elucidate the molecular biology underlying N sensing/signaling in maize, we constructed four small RNA libraries and one degradome from maize seedlings exposed to N deficiency. We discovered a total of 99 absolutely new loci belonging to 47 miRNA families by small RNA deep sequencing and degradome sequencing, as well as 9 new loci were the paralogs of previously reported miR169, miR171, and miR398, significantly expanding the reported 150 high confidence genes within 26 miRNA families in maize. Bioinformatic and subsequent small RNA northern blot analysis identified eight miRNA families (five conserved and three newly identified) differentially expressed under the N-deficient condition. Predicted and degradome-validated targets of the newly identified miRNAs suggest their involvement in a broad range of cellular responses and metabolic processes. Because maize is not only an important crop but is also a genetic model for basic biological research, our research contributes to the understanding of the regulatory roles of miRNAs in plant adaption to N-deficiency stress
    corecore