917 research outputs found

    Signature of Electronic Correlations in the Optical Conductivity of the Doped Semiconductor Si:P

    Full text link
    Electronic transport in highly doped but still insulating silicon at low temperatures is dominated by hopping between localized states; it serves as a model system of a disordered solid for which the electronic interaction can be investigated. We have studied the frequency-dependent conductivity of phosphorus-doped silicon in the THz frequency range (30 GHz to 3 THz) at low temperatures T≥1.8T\geq 1.8 K. The crossover in the optical conductivity from a linear to a quadratic frequency dependence as predicted by Efros and Shklovskii is observed qualitatively; however, the simple model does not lead to a quantitative agreement. Covering a large range of donor concentration, our temperature- and frequency-dependent investigations reveal that electronic correlation effects between the localized states play an important and complex role at low temperatures. In particular we find a super-linear frequency dependence of the conductivity that highlights the influence of the density of states, i.e. the Coulomb gap, on the optical conductivity. When approaching the metal-to-insulator transition by increasing doping concentration, the dielectric constant and the localization length exhibit critical behavior.Comment: 9 pages, 8 figures, 1 tabl

    Two mechanisms drive pronuclear migration in mouse zygotes

    Get PDF
    A new life begins with the unification of the maternal and paternal chromosomes upon fertilization. The parental chromosomes first become enclosed in two separate pronuclei near the surface of the fertilized egg. The mechanisms that then move the pronuclei inwards for their unification are only poorly understood in mammals. Here, we report two mechanisms that act in concert to unite the parental genomes in fertilized mouse eggs. The male pronucleus assembles within the fertilization cone and is rapidly moved inwards by the flattening cone. Rab11a recruits the actin nucleation factors Spire and Formin-2 into the fertilization cone, where they locally nucleate actin and further accelerate the pronucleus inwards. In parallel, a dynamic network of microtubules assembles that slowly moves the male and female pronuclei towards the cell centre in a dynein-dependent manner. Both mechanisms are partially redundant and act in concert to unite the parental pronuclei in the zygote’s centre

    Anomalous Nernst effect in perpendicularly magnetised {\tau}-MnAl thin films

    Full text link
    τ\tau-MnAl is interesting for spintronic applications as a ferromagnet with perpendicular magnetic anisotropy due to its high uniaxial magnetocrystalline anisotropy. Here we report on the anomalous Nernst effect of sputter deposited τ\tau-MnAl thin films. We demonstrate a robust anomalous Nernst effect at temperatures of 200 K and 300 K with a hysteresis similar to the anomalous Hall effect and the magnetisation of the material. The anomalous Nernst coefficient of (0.6±\pm0.24) μ\muV/K at 300 K is comparable to other perpendicular magnetic anisotropy thin films. Therefore τ\tau-MnAl is a promising candidate for spin-caloritronic research

    Isolation and characterisation of the first microsatellite markers for \u3ci\u3eCyperus rotundus\u3c/i\u3e

    Get PDF
    This is the first report of microsatellite markers for Cyperus rotundus. A total of 191 sequence-specific microsatellite markers were isolated and used to screen12 accessions of C. rotundus and one accession of Cyperus esculentus collected from 10 different countries. Polymorphisms were observed in 49% of the markers tested, 22% of the markers were monomorphic and 29% had weak or no amplification. The best 57 markers are reported, and cluster analysis was used to analyse their resolving power. BLASTx screening of the contig sequences was also performed. Multiallelic loci over all samples ranged from 24% to 60%. The maximum number of alleles detected by the markers suggests a polyploidy nature of all C. rotundus accessions tested, except for the sample N25-Brazil. Chromosome number was determined for N12-Taiwan and used as an internal flow cytometry standard to estimate the amount of DNA within haploid nuclei of the remaining material. Chromosome numbers estimated for C. rotundus were 16 and 24. The markers identified in this study can be used for the identification of biotypes and detection of potential crosses of C. rotundus, to implement management practices for the effective control of this weed

    Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)

    Full text link
    Using density-functional theory with the local-density approximation and the generalized gradient approximation we compute the energy barriers for surface diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly with increasing lattice constant. We also discuss the reconstruction that has been found experimentally when two Ag layers are deposited on Pt(111). Our calculations explain why this strain driven reconstruction occurs only after two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres

    Generation of Phaseolus vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phaseolus vulgaris </it>(common bean) is the second most important legume crop in the world after soybean. Consequently, yield losses due to fungal infection, like <it>Uromyces appendiculatus </it>(bean rust), have strong consequences. Several resistant genes were identified that confer resistance to bean rust infection. However, the downstream genes and mechanisms involved in bean resistance to infection are poorly characterized.</p> <p>Results</p> <p>A subtractive bean cDNA library composed of 10,581 unisequences was constructed and enriched in sequences regulated by either bean rust race 41, a virulent strain, or race 49, an avirulent strain on cultivar Early Gallatin carrying the resistance gene <it>Ur-4</it>. The construction of this library allowed the identification of 6,202 new bean ESTs, significantly adding to the available sequences for this plant. Regulation of selected bean genes in response to bean rust infection was confirmed by qRT-PCR. Plant gene expression was similar for both race 41 and 49 during the first 48 hours of the infection process but varied significantly at the later time points (72–96 hours after inoculation) mainly due to the presence of the <it>Avr4 </it>gene in the race 49 leading to a hypersensitive response in the bean plants. A biphasic pattern of gene expression was observed for several genes regulated in response to fungal infection.</p> <p>Conclusion</p> <p>The enrichment of the public database with over 6,000 bean ESTs significantly adds to the genomic resources available for this important crop plant. The analysis of these genes in response to bean rust infection provides a foundation for further studies of the mechanism of fungal disease resistance. The expression pattern of 90 bean genes upon rust infection shares several features with other legumes infected by biotrophic fungi. This finding suggests that the <it>P. vulgaris</it>-<it>U. appendiculatus </it>pathosystem could serve as a model to explore legume-rust interaction.</p

    Purification of immature neuronal cells from neural stem cell progeny

    Get PDF
    Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system
    • …
    corecore