370 research outputs found

    Equilibrium of a Brownian particle with coordinate dependent diffusivity and damping: Generalized Boltzmann distribution

    Get PDF
    Fick's law for coordinate dependent diffusivity is derived. Corresponding diffusion current in the presence of coordinate dependent diffusivity is consistent with the form as given by Kramers-Moyal expansion. We have obtained the equilibrium solution of the corresponding Smoluchowski equation. The equilibrium distribution is a generalization of the Boltzmann distribution. This generalized Boltzmann distribution involves an effective potential which is a function of coordinate dependent diffusivity. We discuss various implications of the existence of this generalized Boltzmann distribution for equilibrium of systems with coordinate dependent diffusivity and damping.Comment: 11 pages, 1 figur

    Development of parsing tools for Casl using generic language technology

    Get PDF
    An environment for the Common Algebraic Specification Language CASL consists of independent tools. A number of CASL have been built using the algebraic formalism ASF+SDF and the+SDF Meta-Environment. CASL supports-defined syntax which is non-trivial to: ASF+SDF offers a powerful parsing(Generalized LR). Its interactive environment facilitates rapid complemented by early detection correction of errors. A number of core developed for the ASF+SDF-Environment can be reused in the context CASL. Furthermore, an instantiation of a format developed for the representation ASF+SDF specifications and terms provides a-specific exchange format

    Who uses running apps and sports watches? : determinants and consumer profiles of event runners' usage of running-related smartphone applications and sports watches.

    Get PDF
    Individual and unorganized sports with a health-related focus, such as recreational running, have grown extensively in the last decade. Consistent with this development, there has been an exponential increase in the availability and use of electronic monitoring devices such as smartphone applications (apps) and sports watches. These electronic devices could provide support and monitoring for unorganized runners, who have no access to professional trainers and coaches. The purpose of this paper is to gain insight into the characteristics of event runners who use running-related apps and sports watches. This knowledge is useful from research, design, and marketing perspectives to adequately address unorganized runners' needs, and to support them in healthy and sustainable running through personalized technology. Data used in this study are drawn from the standardized online Eindhoven Running Survey 2014 (ERS14). In total, 2,172 participants in the Half Marathon Eindhoven 2014 completed the questionnaire (a response rate of 40.0%). Binary logistic regressions were used to analyze the impact of socio-demographic variables, running- related variables, and psychographic characteristics on the use of running-related apps and sports watches. Next, consumer profiles were identified. The results indicate that the use of monitoring devices is affected by socio-demographics as well as sports-related and psychographic variables, and this relationship depends on the type of monitoring device. Therefore, distinctive consumer profiles have been developed to provide a tool for designers and manufacturers of electronic running-related devices to better target (unorganized) runners' needs through personalized and differentiated approaches. Apps are more likely to be used by younger, less experienced and involved runners. Hence, apps have the potential to target this group of novice, less trained, and unorganized runners. In contrast, sports watches are more likely to be used by a different group of runners, older and more experienced runners with higher involvement. Although apps and sports watches may potentially promote and stimulate sports participation, these electronic devices do require a more differentiated approach to target specific needs of runners. Considerable efforts in terms of personalization and tailoring have to be made to develop the full potential of these electronic devices as drivers for healthy and sustainable sports participation.</p

    Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Full text link
    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data is complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.Comment: 21 pages, including 2 pages of supplementary materia

    Increasing particle concentration enhances particle penetration depth but slows down liquid imbibition in thin fibrous filters

    Get PDF
    The transport of particles within thin, porous media is a complex process which received growing attention due to its applications in filtration, printing and microfluidics devices. The effect of particles on liquid imbibition and particle clogging can reduce the performance and lifetime of these applications. However, these processes are still not clearly understood and are challenging to investigate. The goal of this study is to increase our understanding about the effect of particle concentration on the imbibition process in thin fibrous membrane filters. In this study, an Ultra-Fast Imaging NMR method is used to study the particle penetration inside nylon membrane filters for particle suspensions with varying particle concentrations (C0). The measurements revealed that increasing the particle concentration increases the particle penetration depth S(t) as governed by a Langmuir isotherm given by S(t)=l(t)(1+κC0)/1+κ(C0+Cb,m), with Cb,m the bound particles and κ the binding constant. Secondly, in droplet penetration, particles slow down liquid penetration in a Darcy like manner where effect on viscosity (η) and surface tension (σ) determine the penetration speed rather than changes within permeability (K0). The final liquid front (l), scaled according to l2∝σt/η. The particle penetration depths were verified using scanning electron microscopy images.</p

    Magnetite-latex nanoparticle motion during capillary uptake in thin, porous layers studied with UFI‐NMR

    Get PDF
    The transport of nanoparticles in porous media has received growing attention in the last decades due to environmental concerns in, for example, the printing industry, filtration, and transport of pollutants. Experimental studies on the imbibition of particle dispersions in porous media with sufficiently high spatial and temporal resolution are still challenging. This study shows how Ultra-Fast Imaging (UFI) NMR is an ideal tool for studying Fe3O4-latex particles penetration with a temporal resolution of 15 ms and spatial resolution of 18 µm. In the first part, it is shown that a calibration curve between the UFI‐NMR signal intensity and the particle concentration exists. In the second part, UFI‐NMR is used to study the penetration of a particles inside a thin nylon membrane during capillary uptake, which revealed liquid-particle front splitting and an inhomogeneous buildup of the particle concentration. Both the liquid-particle front splitting and inhomogeneous build up could be verified by Scanning Electron Microscopy. Our method allows to determine particle concentration profiles during capillary uptake within thin, porous media. Therefore, the technique can be easily extended to study particle penetrations in a wide variety of systems such thin interfaces, biomaterials, films, and filter media.</p
    corecore