15 research outputs found

    Cross-Sectional and Prospective Associations of Rest-Activity Rhythms With Circulating Inflammatory Markers in Older Men.

    No full text
    Chronic increases in pro-inflammatory cytokines in older adults, known as inflammaging, are an important risk factor for morbidity and mortality in the aging population. It has been suggested that circadian disruption may play a role in chronic inflammation, but there has been limited study that investigated the overall profile of 24-hour rest-activity rhythms in relation to inflammation using longitudinal data. In the Outcomes of Sleep Disorders in Older Men Study, we applied the extended cosine model to derive multiple rest-activity rhythm characteristics using multiday actigraphy, and examined their associations with 6 inflammatory markers (ie, C-reactive protein [CRP], interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], tumor necrosis factor alpha soluble receptor II [TNF-α-sRII], interleukin-1β [IL-1β], interferon gamma [IFN-γ]) measured from fasting blood. We assessed both the cross-sectional association between rest-activity rhythms and inflammatory markers measured at baseline, and the prospective association between baseline rest-activity rhythms and changes in inflammatory markers over 3.5 years of follow-up. We found that multiple rest-activity characteristics, including lower amplitude and relative amplitude, and decreased overall rhythmicity, were associated with higher levels of CRP, IL-6, TNF-α, and TNF-α-sRII, but not IL-1β and IFN-γ at baseline. Moreover, the lowest quartile of these 3 rest-activity characteristics was associated with an approximately 2-fold increase in the odds of having elevated inflammation (ie, having 3 or more markers in the highest quartile) at baseline. However, we found little evidence supporting a relationship between rest-activity rhythm characteristics and changes in inflammatory markers. Future studies should clarify the dynamic relationship between rest-activity rhythms and inflammation in different populations, and evaluate the effects of improving rest-activity profiles on inflammation and related disease outcomes

    Cross-sectional and Prospective Associations of Rest-Activity Rhythms With Metabolic Markers and Type 2 Diabetes in Older Men.

    No full text
    ObjectiveDisruption of rest-activity rhythms is cross-sectionally associated with metabolic disorders, including type 2 diabetes, yet it remains unclear whether it predicts impaired glucose metabolism and homeostasis. The aim of this study is to examine the cross-sectional and prospective associations between rest-activity rhythm characteristics and glycemic measures in a cohort of older men.Research design and methodsBaseline rest-activity rhythms were derived from actigraphy with use of extended cosine model analysis. With subjects fasting, glucose, insulin, and HOMA of insulin resistance (HOMA-IR) were measured from blood at baseline and after ∼3.5 years. Type 2 diabetes was defined based on self-report, medication use, and fasting glucose.ResultsIn the cross-sectional analysis (n = 2,450), lower 24-h amplitude-to-mesor ratio (i.e., mean activity-adjusted rhythm amplitude) and reduced overall rhythmicity were associated with higher fasting insulin and HOMA-IR (all P trend < 0.0001), indicating increased insulin resistance. The odds of baseline type 2 diabetes were significantly higher among those in the lowest quartile of amplitude (Q1) (odds ratio [OR]Q1 vs. Q4 1.63 [95% CI 1.14, 2.30]) and late acrophase group (ORlate vs. normal 1.46 [95% CI 1.04, 2.04]). In the prospective analysis (n = 861), multiple rest-activity characteristics predicted a two- to threefold increase in type 2 diabetes risk, including a lower amplitude (ORQ1 vs. Q4 3.81 [95% CI 1.45, 10.00]) and amplitude-to-mesor ratio (OR 2.79 [95% CI 1.10, 7.07]), reduced overall rhythmicity (OR 3.49 [95% CI 1.34, 9.10]), and a late acrophase (OR 2.44 [1.09, 5.47]).ConclusionsRest-activity rhythm characteristics are associated with impaired glycemic metabolism and homeostasis and higher risk of incident type 2 diabetes

    The endogenous circadian system worsens asthma at night independent of sleep and other daily behavioral or environmental cycles.

    No full text
    Asthma often worsens at night. To determine if the endogenous circadian system contributes to the nocturnal worsening of asthma, independent of sleep and other behavioral and environmental day/night cycles, we studied patients with asthma (without steroid use) over 3 wk in an ambulatory setting (with combined circadian, environmental, and behavioral effects) and across the circadian cycle in two complementary laboratory protocols performed in dim light, which separated circadian from environmental and behavioral effects: 1) a 38-h "constant routine," with continuous wakefulness, constant posture, 2-hourly isocaloric snacks, and 2) a 196-h "forced desynchrony" incorporating seven identical recurring 28-h sleep/wake cycles with all behaviors evenly scheduled across the circadian cycle. Indices of pulmonary function varied across the day in the ambulatory setting, and both laboratory protocols revealed significant circadian rhythms, with lowest function during the biological night, around 4:00 AM, uncovering a nocturnal exacerbation of asthma usually unnoticed or hidden by the presence of sleep. We also discovered a circadian rhythm in symptom-based rescue bronchodilator use (β2-adrenergic agonist inhaler) whereby inhaler use was four times more likely during the circadian night than day. There were additive influences on asthma from the circadian system plus sleep and other behavioral or environmental effects. Individuals with the lowest average pulmonary function tended to have the largest daily circadian variations and the largest behavioral cycle effects on asthma. When sleep was modeled to occur at night, the summed circadian, behavioral/environmental cycle effects almost perfectly matched the ambulatory data. Thus, the circadian system contributes to the common nocturnal worsening of asthma, implying that internal biological time should be considered for optimal therapy

    Assessment of MTNR1B Type 2 Diabetes Genetic Risk Modification by Shift Work and Morningness-Eveningness Preference in the UK Biobank

    No full text
    Night shift work, behavioral rhythms, and the common MTNR1B risk single nucleotide polymorphism (SNP), rs10830963, associate with type 2 diabetes; however, whether they exert joint effects to exacerbate type 2 diabetes risk is unknown. Among employed participants of European ancestry in the UK Biobank (N = 189,488), we aimed to test the cross-sectional independent associations and joint interaction effects of these risk factors on odds of type 2 diabetes (n = 5,042 cases) and HbA1c levels (n = 175,156). Current shift work, definite morning or evening preference, and MTNR1B rs10830963 risk allele associated with type 2 diabetes and HbA1c levels. The effect of rs10830963 was not modified by shift work schedules. While marginal evidence of interaction between self-reported morningness-eveningness preference and rs10830963 on risk of type 2 diabetes was seen, this interaction did not persist when analysis was expanded to include all participants regardless of employment status and when accelerometer-derived sleep midpoint was used as an objective measure of morningness-eveningness preference. Our findings suggest that MTNR1B risk allele carriers who carry out shift work or have more extreme morningness-eveningness preference may not have enhanced risk of type 2 diabetes

    Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects.

    No full text
    Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period
    corecore