2,092 research outputs found

    Explicit solution of the linearized Einstein equations in TT gauge for all multipoles

    Full text link
    We write out the explicit form of the metric for a linearized gravitational wave in the transverse-traceless gauge for any multipole, thus generalizing the well-known quadrupole solution of Teukolsky. The solution is derived using the generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to appear in Class. Quantum Gra

    Symmetric hyperbolic system in the Ashtekar formulation

    Full text link
    We present a first-order symmetric hyperbolic system in the Ashtekar formulation of general relativity for vacuum spacetime. We add terms from constraint equations to the evolution equations with appropriate combinations, which is the same technique used by Iriondo, Leguizam\'on and Reula [Phys. Rev. Lett. 79, 4732 (1997)]. However our system is different from theirs in the points that we primarily use Hermiticity of a characteristic matrix of the system to characterize our system "symmetric", discuss the consistency of this system with reality condition, and show the characteristic speeds of the system.Comment: 4 pages, RevTeX, to appear in Phys. Rev. Lett., Comments added, refs update

    Spontaneous decay of an excited atom in an absorbing dielectric

    Get PDF
    Starting from the quantized version of Maxwell's equations for the electromagnetic field in an arbitrary linear Kramers-Kronig dielectric, spontaneous decay of the excited state of a two-level atom embedded in a dispersive and absorbing medium is studied and the decay rate is calculated. The calculations are performed for both the (Clausius-Mosotti) virtual cavity model and the (Glauber-Lewenstein) real cavity model. It is shown that owing to nonradiative decay associated with absorption the rate of spontaneous decay sensitively depends on the cavity radius when the atomic transition frequency approaches an absorption band of the medium. Only when the effect of absorption is fully disregarded, then the familiar local-field correction factors are recovered.Comment: 28 pages, 6 figures, typeset using RevTe

    Energy Norms and the Stability of the Einstein Evolution Equations

    Get PDF
    The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical solutions of these different formulations display a wide range of growth rates for constraint violations. For symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an energy norm. This expression agrees with the growth rate determined by numerical solution of the equations. An approximate method for estimating the growth rate is also derived. This estimate can be evaluated algebraically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically-determined rate on the parameters that specify the formulation of the equations. This simple rate estimate therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.Comment: Corrected typos; to appear in Physical Review

    Collapse to Black Holes in Brans-Dicke Theory: I. Horizon Boundary Conditions for Dynamical Spacetimes

    Get PDF
    We present a new numerical code that evolves a spherically symmetric configuration of collisionless matter in the Brans-Dicke theory of gravitation. In this theory the spacetime is dynamical even in spherical symmetry, where it can contain gravitational radiation. Our code is capable of accurately tracking collapse to a black hole in a dynamical spacetime arbitrarily far into the future, without encountering either coordinate pathologies or spacetime singularities. This is accomplished by truncating the spacetime at a spherical surface inside the apparent horizon, and subsequently solving the evolution and constraint equations only in the exterior region. We use our code to address a number of long-standing theoretical questions about collapse to black holes in Brans-Dicke theory.Comment: 46 pages including figures, uuencoded gz-compressed postscript, Submitted to Phys Rev

    Biogeography and taxonomy of extinct and endangered monk seals illuminated by ancient DNA and skull morphology

    Get PDF
    Extinctions and declines of large marine vertebrates have major ecological impacts and are of critical concern in marine environments. The Caribbean monk seal, Monachus tropicalis, last definitively reported in 1952, was one of the few marine mammal species to become extinct in historical times. Despite its importance for understanding the evolutionary biogeography of southern phocids, the relationships of M. tropicalis to the two living species of critically endangered monk seals have not been resolved. In this study we present the first molecular data for M. tropicalis, derived from museum skins. Phylogenetic analysis of cytochrome b sequences indicates that M. tropicalis was more closely related to the Hawaiian rather than the Mediterranean monk seal. Divergence time estimation implicates the formation of the Panamanian Isthmus in the speciation of Caribbean and Hawaiian monk seals. Molecular, morphological and temporal divergence between the Mediterranean and "New World monk seals" (Hawaiian and Caribbean) is profound, equivalent to or greater than between sister genera of phocids. As a result, we classify the Caribbean and Hawaiian monk seals together in a newly erected genus, Neomonachus. The two genera of extant monk seals (Monachus and Neomonachus) represent old evolutionary lineages each represented by a single critically endangered species, both warranting continuing and concerted conservation attention and investment if they are to avoid the fate of their Caribbean relative.Dirk-Martin Scheel, Graham J. Slater, Sergios-Orestis Kolokotronis, Charles W. Potter, David S. Rotstein, Kyriakos Tsangaras, Alex D. Greenwood, Kristofer M. Helge

    Evolving Einstein's Field Equations with Matter: The ``Hydro without Hydro'' Test

    Get PDF
    We include matter sources in Einstein's field equations and show that our recently proposed 3+1 evolution scheme can stably evolve strong-field solutions. We insert in our code known matter solutions, namely the Oppenheimer-Volkoff solution for a static star and the Oppenheimer-Snyder solution for homogeneous dust sphere collapse to a black hole, and evolve the gravitational field equations. We find that we can evolve stably static, strong-field stars for arbitrarily long times and can follow dust sphere collapse accurately well past black hole formation. These tests are useful diagnostics for fully self-consistent, stable hydrodynamical simulations in 3+1 general relativity. Moreover, they suggest a successive approximation scheme for determining gravitational waveforms from strong-field sources dominated by longitudinal fields, like binary neutron stars: approximate quasi-equilibrium models can serve as sources for the transverse field equations, which can be evolved without having to re-solve the hydrodynamical equations (``hydro without hydro'').Comment: 4 postscript figures. Submitted to Phys. Rev. D15 as a Brief Repor

    Implementing an apparent-horizon finder in three dimensions

    Get PDF
    Locating apparent horizons is not only important for a complete understanding of numerically generated spacetimes, but it may also be a crucial component of the technique for evolving black-hole spacetimes accurately. A scheme proposed by Libson et al., based on expanding the location of the apparent horizon in terms of symmetric trace-free tensors, seems very promising for use with three-dimensional numerical data sets. In this paper, we generalize this scheme and perform a number of code tests to fully calibrate its behavior in black-hole spacetimes similar to those we expect to encounter in solving the binary black-hole coalescence problem. An important aspect of the generalization is that we can compute the symmetric trace-free tensor expansion to any order. This enables us to determine how far we must carry the expansion to achieve results of a desired accuracy. To accomplish this generalization, we describe a new and very convenient set of recurrence relations which apply to symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures
    corecore