3 research outputs found

    Cryptic persistence and loss of local endemism in Lake Constance charr subject to anthropogenic disturbance

    Get PDF
    In the welcome circumstance that species believed extinct are rediscovered, it is often the case that biological knowledge acquired before the presumed extinction is limited. Efforts to address these knowledge gaps, in particular to assess the taxonomic integrity and conservation status of such species, can be hampered by a lack of genetic data and scarcity of samples in museum collections. Here, we present a proof-of-concept case study based on a multidisciplinary data evaluation approach to tackle such problems. The approach was developed after the rediscovery, 40 years after its presumed extinction, of the enigmatic Lake Constance deep-water charr Salvelinus profundus. Targeted surveys led to the capture of further species and additional sympatric normal charr, Salvelinus cf. umbla. Since the lake had been subject to massive stocking in the past, an evaluation of the genetic integrity of both extant forms was called for in order to assess possible introgression. A two-step genomic approach was developed based on restriction site associated DNA (RAD). Diagnostic population genomic (single nucleotide polymorphism [SNP]) data were harvested from contemporary samples and used for RNA bait design to perform target capture in DNA libraries of archival scale material, enabling a comparison between extant and historic samples. Furthermore, life history traits and morphological data for both extant forms were gathered and compared with historical data from the past 60–120 years. While extant deep-water charr matched historical deep-water specimens in body shape, gill raker count, and growth rates, significant differences were discovered between historical and extant normal charr. These resulted were supported by genomic analyses of contemporary samples, revealing the two extant forms to be highly divergent. The results of population assignment tests suggest that the endemic deep-water charr persisted in Lake Constance during the eutrophic phase, but not one of the historical genomic samples could be assigned to the extant normal charr taxon. Stocking with non-endemic charr seems to be the most likely reason for these changes. This proof-of-concept study presents a multidisciplinary data evaluation approach that simultaneously tests population genomic integrity and addresses some of the conservation issues arising from rediscovery of a species characterized by limited data availability.publishedVersio

    Of teeth and trees: A fossil tip-dating approach to infer divergence times of extinct and extant squaliform sharks

    No full text
    Fossil tip-dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re-estimate divergence times using information of 61 fossil tip-dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus †Protospinax, which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip-dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.Deutsche Elasmobranchier‐Gesellschaft e.V.; NJM was supported by a NIMBioS fellowship under NSF Award #EFJ0832858, and ARC DECRA fellowship DE15010177

    Towards the phylogenetic placement of the enigmatic African genus Prolabeops Schultz, 1941

    No full text
    The small cyprinid genus Prolabeops Schultz, 1941 is restricted to the Nyong and Sanaga River systems in Cameroon. In the past, the genus had been suggested to be either a member of the Labeoninae, Torinae or the Smiliogastrinae mainly on the basis of morphological similarities, and it is nowadays considered as incertae sedis within the Cypriniformes. This study provides the first attempt to reveal the phylogenetic position of Prolabeops using molecular data. For this purpose, the authors sequenced a large fraction of the mitochondrial genome (c. 13,600 bp), including all mitochondrial protein coding genes, of two Prolabeops melanhypopterus specimens and an additional four Enteromius specimens. The large-scale phylogenetic analysis was based on an alignment including all mitochondrial protein coding genes of 902 specimens representing c. 899 cypriniform species. Prolabeops was clearly recovered within the African Smiliogastrinae, forming a weakly supported clade together with Enteromius jae, Enteromius hulstaerti and Barboides gracilis. The study data underline the urgent need of a thorough taxonomic revision of the small African barbs collectively placed in the genus Enteromius
    corecore