42 research outputs found

    Alterations in the cellular DNA and protein content determined by flow cytometry as indicators for chemically induced structural and numerical chromosome aberrations

    Get PDF
    Cellular DNA and protein content were determined simultaneously in freshly isolated fibroblast-like rat cells by flow cytometry. After exposure to doxorubicin, nitrofurantoin, propranolol and practolol at a low, tissue like oxygen concentration (5% O2), drug-induced alterations in cell cycle kinetics, in the distribution of DNA and in the protein content of G1-phase cells (nucleus/cytoplasm ratio) were analysed. Optimal exposure time (5 or 24 h) and recovery interval (24 or 48 h) were determined. Variation in the exposure time and recovery period can affect cell cycle kinetics both qualitatively and quantitatively, whereas the distribution of DNA and protein content are affected quantitatively only. A 24-h exposure combined with a 24-h recovery period proved to be the most efficient approach. Each of the tested chemicals induced a specific, dose-dependent pattern of altered cellular DNA and protein content. Comparison with results obtained in other genotoxicity tests, and with data reported earlier, showed that this two-parameter protocol can be used to recognize and to characterize chemicals as clastogens, or as compounds with a combined cytostatic/clastogenic activity, or as spindle-poison-like compound

    Ellbogendysplasie beim Hund: Finite-Elemente-Analyse

    Get PDF
    Ellbogengelenkserkrankungen gewinnen bei jungen Hunden großer, schnellwüchsiger und bewegungsfreudiger Rassen seit Jahren zunehmend an Bedeutung. Als mögliche Ursachen der Ellbogendysplasie wurden - neben genetischer Veranlagung - Übergewicht und Überlastung der gelenkbildenden Knochen benannt. In der vorliegenden Untersuchung wurde der Einfluss verschiedener biomechanischer Parameter auf die Lastübertragung in gesunden und pathologischen Hundeellbogen mit einem zweidimensionalen Finite-Elemente-Modell analysiert. Pathologische Veränderungen der Ellbogenstruktur, wie veränderte Materialeigenschaften oder asynchrones Knochenwachstum, veränderten deutlich die Kontaktdrücke in den Artikulationen, die Knochendeformation und die Spannungen in den Knochen. Die gewonnenen Erkenntnisse unterstützen die langjährigen empirischen Beobachtungen und bieten eine Erklärung für die bis anhin kaum verstandenen klinischen Erscheinungsbilde

    Distribution of lactate dehydrogenase in healthy and degenerative canine stifle joint cartilage

    Get PDF
    In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collage

    An ADAMTS3 Missense Variant is Associated with Norwich Terrier Upper Airway Syndrome

    Get PDF
    In flat-faced dog breeds, air resistance caused by skull conformation is believed to be a major determinant of Brachycephalic Obstructive Airway Syndrome (BOAS). The clinical presentation of BOAS is heterogeneous, suggesting determinants independent of skull conformation contribute to airway disease. Norwich Terriers, a mesocephalic breed, are predisposed to Upper Airway Syndrome (UAS), a disease whose pathological features overlap with BOAS. Our health screening clinic examined and scored the airways of 401 Norwich terriers by laryngoscopy. Genome-wide association analyses of UAS-related pathologies revealed a genetic association on canine chromosome 13 (rs9043975, p = 7.79x10-16). Whole genome resequencing was used to identify causal variant(s) within a 414 kb critical interval. This approach highlighted an error in the CanFam3.1 dog assembly, which when resolved, led to the discovery of a c.2786G>A missense variant in exon 20 of the positional candidate gene, ADAM metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). In addition to segregating with UAS amongst Norwich Terriers, the ADAMTS3 c.2786G>A risk allele frequency was enriched among the BOAS-susceptible French and (English) Bulldogs. Previous studies indicate that ADAMTS3 loss of function results in lymphoedema. Our results suggest a new paradigm in the understanding of canine upper airway disease aetiology: airway oedema caused by disruption of ADAMTS3 predisposes dogs to respiratory obstruction. These findings will enhance breeding practices and could refine the prognostics of surgical interventions that are often used to treat airway obstruction

    Endoprothesen

    No full text

    Die Osteoarthritis beim Hund

    No full text

    Alterations in the cellular DNA and protein content determined by flow cytometry as indicators for chemically induced structural and numerical chromosome aberrations

    Full text link
    Cellular DNA and protein content were determined simultaneously in freshly isolated fibroblast-like rat cells by flow cytometry. After exposure to doxorubicin, nitrofurantoin, propranolol and practolol at a low, tissue like oxygen concentration (5% O2), drug-induced alterations in cell cycle kinetics, in the distribution of DNA and in the protein content of G1-phase cells (nucleus/cytoplasm ratio) were analysed. Optimal exposure time (5 or 24 h) and recovery interval (24 or 48 h) were determined. Variation in the exposure time and recovery period can affect cell cycle kinetics both qualitatively and quantitatively, whereas the distribution of DNA and protein content are affected quantitatively only. A 24-h exposure combined with a 24-h recovery period proved to be the most efficient approach. Each of the tested chemicals induced a specific, dose-dependent pattern of altered cellular DNA and protein content. Comparison with results obtained in other genotoxicity tests, and with data reported earlier, showed that this two-parameter protocol can be used to recognize and to characterize chemicals as clastogens, or as compounds with a combined cytostatic/clastogenic activity, or as spindle-poison-like compound
    corecore