8 research outputs found

    In vitro biotransformation assays using fish liver cells: Comparing rainbow trout and carp hepatocytes.

    Get PDF
    Biotransformation assays using primary hepatocytes from rainbow trout, Oncorhynchus mykiss, were validated as a reliable in vitro tool to predict in vivo bioconcentration factors (BCF) of chemicals in fish. Given the pronounced interspecies differences of chemical biotransformation, the present study aimed to compare biotransformation rate values and BCF predictions obtained with hepatocytes from the cold-water species, rainbow trout, to data obtained with hepatocytes of the warm-water species, common carp (Cyprinus carpio). In a first step, we adapted the protocol for the trout hepatocyte assay, including the cryopreservation method, to carp hepatocytes. The successful adaptation serves as proof of principle that the in vitro hepatocyte biotransformation assays can be technically transferred across fish species. In a second step, we compared the in vitro intrinsic clearance rates (CLin vitro, int) of two model xenobiotics, benzo[a]pyrene (BaP) and methoxychlor (MXC), in trout and carp hepatocytes. The in vitro data were used to predict in vivo biotransformation rate constants (kB) and BCFs, which were then compared to measured in vivo kB and BCF values. The CLin vitro, int values of BaP and MXC did not differ significantly between trout and carp hepatocytes, but the predicted BCF values were significantly higher in trout than in carp. In contrast, the measured in vivo BCF values did not differ significantly between the two species. A possible explanation of this discrepancy is that the existing in vitro-in vivo prediction models are parameterized only for trout but not for carp. Therefore, future research needs to develop species-specific extrapolation models

    ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons

    Get PDF
    Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway

    Comparison of Alternative Methods for Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella azteca

    No full text
    Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined.ISSN:0277-2248ISSN:1029-0486ISSN:0092-986

    Comparison of Alternative Methods for Bioaccumulation Assessment: Scope and Limitations of In Vitro Depletion Assays with Rainbow Trout and Bioconcentration Tests in the Freshwater Amphipod Hyalella azteca

    No full text
    Bioaccumulation assessment predominantly relies on the bioconcentration factor (BCF) as the sole decisive metric. The test guideline 305 by the Organisation for Economic Co-operation and Development (OECD) provides the standard procedure for deriving this in vivo fish BCF, which is not only expensive and labor-intensive, but also requires many animals. Accordingly, there is a great need for and interest in alternative methods that can help to reduce, replace, and refine vertebrate tests, as described in the 3R principles. Two alternative approaches have been developed: the bioconcentration test with the freshwater amphipod Hyalella azteca and the OECD test guideline 319 which provides a method to determine experimentally derived in vitro metabolism rates that can then be incorporated into in silico prediction models for rainbow trout BCF calculation. In the present study both alternative methods were applied to 5 substances of different physicochemical characteristics. The results were compared with literature values of fish in vivo BCFs and additional BCFs obtained with the alternative methods, if available. Potential differences between the results of the test methods are discussed utilizing information such as in vivo metabolism rates. The currently available data set suggests that these 2 alternative methods pose promising alternatives to predict bioaccumulation in fish, although defined applicability domains have yet to be determined.ISSN:0277-2248ISSN:1029-0486ISSN:0092-986

    DataSheet1_In vitro biotransformation assays using fish liver cells: Comparing rainbow trout and carp hepatocytes.pdf

    No full text
    Biotransformation assays using primary hepatocytes from rainbow trout, Oncorhynchus mykiss, were validated as a reliable in vitro tool to predict in vivo bioconcentration factors (BCF) of chemicals in fish. Given the pronounced interspecies differences of chemical biotransformation, the present study aimed to compare biotransformation rate values and BCF predictions obtained with hepatocytes from the cold-water species, rainbow trout, to data obtained with hepatocytes of the warm-water species, common carp (Cyprinus carpio). In a first step, we adapted the protocol for the trout hepatocyte assay, including the cryopreservation method, to carp hepatocytes. The successful adaptation serves as proof of principle that the in vitro hepatocyte biotransformation assays can be technically transferred across fish species. In a second step, we compared the in vitro intrinsic clearance rates (CLin vitro, int) of two model xenobiotics, benzo[a]pyrene (BaP) and methoxychlor (MXC), in trout and carp hepatocytes. The in vitro data were used to predict in vivo biotransformation rate constants (kB) and BCFs, which were then compared to measured in vivo kB and BCF values. The CLin vitro, int values of BaP and MXC did not differ significantly between trout and carp hepatocytes, but the predicted BCF values were significantly higher in trout than in carp. In contrast, the measured in vivo BCF values did not differ significantly between the two species. A possible explanation of this discrepancy is that the existing in vitro-in vivo prediction models are parameterized only for trout but not for carp. Therefore, future research needs to develop species-specific extrapolation models.</p

    Immunocontraception of male and female giraffes using the GnRH vaccine Improvac (R)

    No full text
    The aim of this study was to develop protocols for contraception in both sexes of giraffes (Giraffa camelopardalis) by using the GnRH vaccine Improvac (R). We evaluated the success of immunization by analyzing fecal reproductive hormone metabolites in female (n = 20) and male (n = 9) giraffes. Endocrine analysis provided the basis for the successful immunization protocol, as well as for assessing long-term effects. Reliable reduction of fecal steroid metabolites to baseline levels in female giraffes was achieved with three, and in males with four or five injections at 4-week intervals. Effective booster injections were administered at 2-month intervals in the first year of treatment and at three to 4-month intervals in the following years. In addition to endocrine analysis, we determined vaccination efficacy in bulls by assessing testicular atrophy. Long-term (>2 years) use in females was often accompanied by prolonged periods of persistent corpus luteum activity, although normal cycles were not observed. Problems might occur with reversibility, because in a few males and females, even after more than 2 years since treatment had been stopped, fecal hormone metabolites have not returned to pretreatment levels. The results are somewhat ambiguous, as reproduction can be suppressed by use of Improvac (R), but the question of reversibility remains unsolved

    Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: A subgroup analysis of the ARISTOTLE trial

    No full text
    Background: In the ARISTOTLE trial, the rate of stroke or systemic embolism was reduced by apixaban compared with warfarin in patients with atrial fibrillation (AF). Patients with AF and previous stroke or transient ischaemic attack (TIA) have a high risk of stroke. We therefore aimed to assess the efficacy and safety of apixaban compared with warfarin in prespecified subgroups of patients with and without previous stroke or TIA. Methods: Between Dec 19, 2006, and April 2, 2010, patients were enrolled in the ARISTOTLE trial at 1034 clinical sites in 39 countries. 18 201 patients with AF or atrial flutter were randomly assigned to receive apixaban 5 mg twice daily or warfarin (target international normalised ratio 2·0-3·0). The median duration of follow-up was 1·8 years (IQR 1·4-2·3). The primary efficacy outcome was stroke or systemic embolism, analysed by intention to treat. The primary safety outcome was major bleeding in the on-treatment population. All participants, investigators, and sponsors were masked to treatment assignments. In this subgroup analysis, we estimated event rates and used Cox models to compare outcomes in patients with and without previous stroke or TIA. The ARISTOTLE trial is registered with ClinicalTrials.gov, number NTC00412984. Findings: Of the trial population, 3436 (19%) had a previous stroke or TIA. In the subgroup of patients with previous stroke or TIA, the rate of stroke or systemic embolism was 2·46 per 100 patient-years of follow-up in the apixaban group and 3·24 in the warfarin group (hazard ratio [HR] 0·76, 95% CI 0·56 to 1·03); in the subgroup of patients without previous stroke or TIA, the rate of stroke or systemic embolism was 1·01 per 100 patient-years of follow-up with apixaban and 1·23 with warfarin (HR 0·82, 95% CI 0·65 to 1·03; p for interaction=0·71). The absolute reduction in the rate of stroke and systemic embolism with apixaban versus warfarin was 0·77 per 100 patient-years of follow-up (95% CI -0·08 to 1·63) in patients with and 0·22 (-0·03 to 0·47) in those without previous stroke or TIA. The difference in major bleeding with apixaban compared with warfarin was 1·07 per 100 patient-years (95% CI 0·09-2·04) in patients with and 0·93 (0·54-1·32) in those without previous stroke or TIA. Interpretation: The effects of apixaban versus warfarin were consistent in patients with AF with and without previous stroke or TIA. Owing to the higher risk of these outcomes in patients with previous stroke or TIA, the absolute benefits of apixaban might be greater in this population. Funding: Bristol-Myers Squibb and Pfizer. © 2012 Elsevier Ltd

    Apixaban versus warfarin in patients with atrial fibrillation

    No full text
    BACKGROUND: Vitamin K antagonists are highly effective in preventing stroke in patients with atrial fibrillation but have several limitations. Apixaban is a novel oral direct factor Xa inhibitor that has been shown to reduce the risk of stroke in a similar population in comparison with aspirin. METHODS: In this randomized, double-blind trial, we compared apixaban (at a dose of 5 mg twice daily) with warfarin (target international normalized ratio, 2.0 to 3.0) in 18,201 patients with atrial fibrillation and at least one additional risk factor for stroke. The primary outcome was ischemic or hemorrhagic stroke or systemic embolism. The trial was designed to test for noninferiority, with key secondary objectives of testing for superiority with respect to the primary outcome and to the rates of major bleeding and death from any cause. RESULTS: The median duration of follow-up was 1.8 years. The rate of the primary outcome was 1.27% per year in the apixaban group, as compared with 1.60% per year in the warfarin group (hazard ratio with apixaban, 0.79; 95% confidence interval [CI], 0.66 to 0.95; P<0.001 for noninferiority; P = 0.01 for superiority). The rate of major bleeding was 2.13% per year in the apixaban group, as compared with 3.09% per year in the warfarin group (hazard ratio, 0.69; 95% CI, 0.60 to 0.80; P<0.001), and the rates of death from any cause were 3.52% and 3.94%, respectively (hazard ratio, 0.89; 95% CI, 0.80 to 0.99; P = 0.047). The rate of hemorrhagic stroke was 0.24% per year in the apixaban group, as compared with 0.47% per year in the warfarin group (hazard ratio, 0.51; 95% CI, 0.35 to 0.75; P<0.001), and the rate of ischemic or uncertain type of stroke was 0.97% per year in the apixaban group and 1.05% per year in the warfarin group (hazard ratio, 0.92; 95% CI, 0.74 to 1.13; P = 0.42). CONCLUSIONS: In patients with atrial fibrillation, apixaban was superior to warfarin in preventing stroke or systemic embolism, caused less bleeding, and resulted in lower mortality. Copyright © 2011 Massachusetts Medical Society. All rights reserved
    corecore