6 research outputs found

    Acoustic Testing of the Tiltrotor Test Rig in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel

    Get PDF
    The Tiltrotor Test Rig (TTR) was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel from 2017 to 2018. The rotor system can be configured in airplane mode, with the rotor plane perpendicular to the wind flow, and in helicopter mode, with the rotor plane parallel to the wind flow. Four microphones were placed around the TTR: two on the wind tunnel floor and two on struts. The primary goal of the test was to understand the operational capabilities of the TTR, while also acquiring research data as available. Limited measurements of the blade vortex interaction (BVI) noise of the TTR rotor were taken to not only understand the acoustic testing capabilities of the TTR in the NFAC 40- by 80-Foot Wind Tunnel, but to also compare to previous tests and to be used for future validation studies. In particular, data will be compared to measurements of an XV-15 rotor previously acquired in the NFAC 80- by 120-Foot Wind Tunnel

    Acoustic Testing of the Tiltrotor Test Rig in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel

    Get PDF
    The Tiltrotor Test Rig (TTR) was tested in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel from 2017 to 2018. The primary goal of the test was to understand the operational capabilities of the TTR, while also acquiring research data, including acoustic data. Four microphones were placed around the TTR: two on the wind tunnel floor and two on struts. Acoustic measurements of the TTR rotor were acquired to 1) understand the acoustic testing capabilities of the TTR in the NFAC 40- by 80-FootWind Tunnel, 2) compare to previous XV-15 rotor acoustic data acquired in the NFAC 80- by 120-Foot Wind Tunnel, and 3) provide data for future validation studies. A data quality study revealed that the NFAC 40- by 80-Foot Wind Tunnel is an adequate acoustic environment to test the TTR rotor. For a given thrust and advance ratio, a shaft angle sweep was performed and acoustic measurements were compared against 1996 and 1999 XV-15 data in the NFAC 80- by 120-Foot Wind Tunnel; differences between the three tests are discussed

    Time-Varying Loads of Co-Axial Rotor Blade Crossings

    Get PDF
    The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upperlower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips. The shed vorticity from prior crossing events will affect each pair of upperlower airfoils. The aerodynamic loads on the airfoil and flow field characteristics are computed before, at, and after each airfoil crossing. Results from the multiple-airfoil simulation show noticeable changes in the airfoil aerodynamics by introducing additional fluctuation in the aerodynamic time history

    Extraction of Dynamic Inflow Models for Coaxial and Tandem Rotors from CFD Simulations

    Get PDF
    The dynamic inflow coupling with rotor/body dynamics is crucial in the analysis of stability and control law design for helicopters. Over the past several decades, finite-state inflow models for single rotor configurations in hover, forward flight, and maneuver have developed (Ref.1-3). By capturing the interference effects between rotors, the extension of pressure potential finite state inflow model has promising result for coaxial rotor configuration (Ref.4-6). Recently, the focus of the dynamic inflow modeling has shifted to tandem rotor configurations (Ref.7, 8). The development of the dynamic inflow models for tandem rotor configuration still have some limitations due to the lack of knowledge of rotor-to-rotor interference, and rotor-wake interference. Experimental methods, and computational fluid dynamics methods are commonly used to understand the rotor performance and rotor airload variations, and measure or predict inflow velocity distributions at the rotor desk. The inflow distributions are subsequently used to improve the dynamic inflow models. Tandem rotor configurations have been studied experimentally and computationally for several decades (Ref.9-12). Sweet (Ref.10) observed that a tandem rotor with 76-percent-radius overlap required 14% more induced power at hovering condition, relative to an isolated rotor of equivalent disk area. Sweet also found that, above a shaft-to-shaft distance of 1.03 diameter, the performance of the tandem rotor was nearly the same as two isolated rotors. The objective of the present study is to apply computational fluid dynamics simulations of tandem rotors for the extraction of dynamic inflow models. The extended methodology is first validated by comparing the computed induced power against test data. Subsequently inflow distributions and wake structures are analyzed
    corecore