132 research outputs found

    Tunable multi-wavelength third-harmonic generation using exposed-core microstructured optical fiber

    Get PDF
    We demonstrate that exposed-core microstructured optical fibers offer multiple degrees of freedom for tailoring third-harmonic generation through the core diameter, input polarization, and nanofilm deposition. Varying these parameters allows control of the phase-matching position between an infrared pump wavelength and the generated visible wavelengths. In this Letter, we show how increasing the core diameter over previous experiments (2.57 μm compared to 1.85 μm) allows the generation of multiple wavelengths, which can be further controlled by rotating the input pump polarization and the deposition of dielectric nanofilms. This can lead to highly tailorable light sources for applications such as spectroscopy or nonlinear microscopy.Stephen C. Warren-Smith, Kay Schaarschmidt, Mario Chemnitz, Erik P. Schartner, Henrik Schneidewind, Heike Ebendorff-Heidepriem and Markus A. Schmid

    High precision pH measurements in biological environments using a portable optical fibre pH sensor

    Get PDF
    Abstract not availableGeorgina M. Sylvia, Erik P. Schartner, Hanna J. McLennan, Avishkar Saini, Kylie R. Dunning, Malcolm S. Purdey, Andrew D. Abell, Jeremy G. Thompso

    Taming the light in microstructured optical fibers for sensing

    Get PDF
    In this review, we examine recent developments in the field of chemical and biological sensing utilizing suspended-core, exposed-core, and hollow-core microstructured optical fibers. Depending on the intended application, a host of sensing modalities have been utilized including labelled fluorescence techniques, and label-free methods such as surface plasmon resonance, fiber Bragg gratings, and Raman scattering. The use of various functionalization techniques adds specificity to both chemical ions and biological molecules. The results shown here highlight some of the important benefits that arise with the use of microstructured optical fibers compared to traditional techniques, including small sample volumes, high sensitivity, and multiplexing.Erik P. Schartner, Georgios Tsiminis, Alexandre François, Roman Kostecki, Stephen C. Warren-Smith, Linh Viet Nguyen, Sabrina Heng, Tess Reynolds, Elizaveta Klantsataya, Kris J. Rowland, Andrew D. Abell, Heike Ebendorff-Heidepriem, Tanya M. Monr

    Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia

    Get PDF
    Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia

    Perspective: biomedical sensing and imaging with optical fibers - innovation through convergence of science disciplines

    Get PDF
    The probing of physiological processes in living organisms is a grand challenge that requires bespoke analytical tools. Optical fiber probes offer a minimally invasive approach to report physiological signals from specific locations inside the body. This perspective article discusses a wide range of such fiber probes developed at the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics. Our fiber platforms use a range of sensing modalities, including embedded nanodiamonds for magnetometry, interferometric fiber cavities for refractive index sensing, and tailored metal coatings for surface plasmon resonance sensing. Other fiber probes exploit molecularly sensitive Raman scattering or fluorescence where optical fibers have been combined with chemical and immunosensors. Fiber imaging probes based on interferometry and computational imaging are also discussed as emerging in vivo diagnostic devices. We provide examples to illustrate how the convergence of multiple scientific disciplines generates opportunities for the fiber probes to address key challenges in real-time in vivo diagnostics. These future fiber probes will enable the asking and answering of scientific questions that were never possible before.Jiawen Li ... Heike Ebendorff-Heidepriem ... Mark R. Hutchinson ... Roman Kostecki ... Erik P. Schartner ... Georgios Tsiminis ... Stephen C. Warren-Smith ... et al

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore