215 research outputs found

    Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin blockade regime

    Full text link
    It was recently predicted [Phys. Rev. B 75, 193301 (2007)] that spin blockade may develop at nonmagnetic semiconductor/perfect ferromagnet junctions when the electron flow is directed from the semiconductor into the ferromagnet. Here we consider current-voltage characteristics of such junctions. By taking into account the contact resistance, we demonstrate a current stabilization effect: by increasing the applied voltage the current density through the junction saturates at a specific value. The transient behavior of the current density is also investigated

    Spin memristive systems

    Full text link
    Recently, in addition to the well-known resistor, capacitor and inductor, a fourth passive circuit element, named memristor, has been identified following theoretical predictions. The model example used in such case consisted in a nanoscale system with coupled ionic and electronic transport. Here, we discuss a system whose memristive behaviour is based entirely on the electron spin degree of freedom which allows for a more convenient control than the ionic transport in nanostructures. An analysis of time-dependent spin transport at a semiconductor/ferromagnet junction provides a direct evidence of memristive behaviour. Our scheme is fundamentally different from previously discussed schemes of memristive devices and broadens the possible range of applications of semiconductor spintronics

    Hall Voltage with the Spin Hall Effect

    Full text link
    The spin Hall effect does not generally result in a charge Hall voltage. We predict that in systems with inhomogeneous electron density in the direction perpendicular to main current flow, the spin Hall effect is instead accompanied by a Hall voltage. Unlike the ordinary Hall effect, we find that this Hall voltage is quadratic in the longitudinal electric field for a wide range of parameters accessible experimentally. We also predict spin accumulation in the bulk and sharp peaks of spin-Hall induced charge accumulation near the edges. Our results can be readily tested experimentally, and would allow the electrical measurement of the spin Hall effect in non-magnetic systems and without injection of spin-polarized electrons

    A transimpedance amplifier using a novel current mode feedback loop

    Get PDF
    We present a transimpedance amplifier stage based on a novel current mode feedback topology. This circuit employs NMOS and PMOS transistors exclusively and requires neither capacitor for stabilizing the transimpedance loop nor resistor for the transresistance feedback and transistor loading. This amplifier circuit is fully compatible with submicron digital CMOS processes. The active feedback network consists of two grounded-gate MOS devices which split the output current in both the feedback and output branches. The transresistance and the phase margin are adjustable through external DC signals. The measured rise time of the impulse response of the amplifier implemented in an industrial 0,7µm CMOS process is 18 ns for a transresistance of 180 k and 30 ns for a transresistance of 560 k. The measured Equivalent Noise Charge (ENC) is 800 rms e¯ for an input capacitance of 20 pF with the transresistance adjusted to 560 k

    New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure

    Full text link
    A new combined PIC-MCC approach is developed for accurate and fast simulation of a radio frequency discharge at low gas pressure and high density of plasma. Test calculations of transition between different modes of electron heating in a ccrf discharge in helium and argon show a good agreement with experimental data. We demonstrate high efficiency of the combined PIC-MCC algorithm, especially for the collisionless regime of electron heating.Comment: 6 paged, 8 figure

    Minority-carrier effects in poly-phenylenevinylene as studied by electrical characterization

    Get PDF
    Electrical measurements have been performed on poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] in a pn junction with silicon. These included current-voltage measurements, capacitance-voltage measurements, capacitance-transient spectroscopy, and admittance spectroscopy. The measurements show evidence for large minority-carrier injection into the polymer possibly enabled by interface states for which evidence is also found. The shallow acceptor level depth (0.12 eV) and four deep trap level activation energies (0.30 and 1.0 eV majority-carrier type; 0.48 and 1.3 eV minority-carrier type) are found. Another trap that is visible at room temperature has point-defect nature. (C) 2001 American Institute of Physics

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype

    Get PDF
    Tardive dyskinesia (TD) is an important limiting factor in the use of typical antipsychotic drugs. Genetic variability in the serotonin 2A (5-HT2A) receptor may influence risk for TD but the results of prior studies are not confirmatory. The objective of this study was to determine association of T102C and His452Tyr polymorphisms in the 5-HT2A receptor gene (HTR2A) with TD in a large, multicentre patient sample. The design employed case-control analysis controlling for possible confounders using pooled, original data from published and available unpublished samples and employing logistic regression, analysis of variance and meta-analysis. The study sample consisted of 635 patients with schizophrenia or schizoaffective disorder (256 with TD and 379 without TD) drawn from five research centres, divided into six groups based on population origin. The main outcome measure was association of a categorical diagnosis of TD based on the Research Diagnostic Criteria for TD with HTR2A T102C and His452Tyr genotypes and haplotypes. The findings indicate significant association of TD with HTR2A T102C genotype (p = 0.002) over and above the effect of population group, also when controlling for age and gender (p = 0.0008), but not with His452Tyr genotype. The T102C genotype was significantly associated with TD in older (> median age 47 yr, p = 0.002) but not younger patients and in patients with non-orofacial (limb-truncal) (p=0.001) but not orofacial TD. By meta-analysis the Mantel-Haenszel (M-H) pooled odds ratio (OR) across all the available data was 1.64. A T102C-His452Tyr haplotype was significantly associated with TD (p = 0.0008). These findings confirm that genetic variability in HTR2A contributes a small but significant degree of risk for the expression of TD, particularly in older patients and specifically for the non-orofacial (limb-truncal) type. Together with other genetic variants associated with TD the findings could be used to assess risk in patients who are candidates for treatment with typical antipsychotic medications

    LHC1: a semiconductor pixel detector readout chip with internal, tunable delay providing a binary pattern of selected events

    Get PDF
    The Omega3/LHCl pixel detector readout chip comprises a matrix of 128 X 16 readout cells of 50 mu m X 500 mu m and peripheral functions with 4 distinct modes of initialization and operation, together more than 800 000 transistors. Each cell contains a complete chain of amplifier, discriminator with adjustable threshold and fast-OR output, a globally adjustable delay with local fine-tuning, coincidence logic and memory. Every cell can be individually addressed for electrical test and masking, First results have been obtained from electrical tests of a chip without detector as well as from source measurements, The electronic noise without detector is similar to 100 e(-) rms. The lowest threshold setting is close to 2000 e(-) and non-uniformity has been measured to be better than 450 e(-) rms at 5000 e(-) threshold. A timewalk of < 10 ns and a precision of < 6 ns rms on a delay of 2 mu s have been measured. The results may be improved by further optimization
    corecore