381 research outputs found
Observations of neutral depletion and plasma acceleration in a flowing high-power argon helicon plasma
Neutral depletion effects are observed in a steady-state flowing argon helicon plasma with a magnetic nozzle for high rf input powers (up to 3 kW). Noninvasive diagnostics including 105 GHz microwave interferometry and optical spectroscopy with collisional-radiative modeling are used to measure the electron density (ne), electron temperature (Te), and neutral density (nn). A region of weak neutral depletion is observed upstream of the antenna where increasing rf power leads to increased electron density (up to ne = 1.6×1013 cm-3) while Te remains essentially constant and low (1.7–2.0 eV). The downstream region exhibits profound neutral depletion (maximum 92% line-averaged ionization), where Te rises linearly with increasing rf power (up to 4.9 eV) and ne remains constrained (below 6.5×1012 cm-3). Flux considerations indicate accelerated plasma flow (Mach 0.24) through the antenna region due to an axial pressure gradient with reduced collisional drag from neutral depletion
Experimental observation of ion beams in the Madison Helicon eXperiment
Argon ion beams up to Eb=165 eV at Prf=500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M=vi/cs up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate, rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eVp~5kTe for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies Eb=e[Vbeam-Vplasma]\u3e10kTe
Ion acceleration in a helicon source due to the self-bias effect
Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (pn \u3c 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding Ei≈7 kTe in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a swept emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (Vp-p≥140V, Vp-p/Vp ≈ 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to neutralize the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate
Experimental and theoretical investigations of a rectangular grating structure for low-voltage traveling wave tube amplifiers
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair
Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase θ (Pol θ), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol θ contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol θ. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol θ can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol θ and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance
Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder
Background: Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy.
Methods: and results We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNACys was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology.
Conclusions: Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy
Experimental Investigation of 193-nm Laser Breakdown in Air
Abstract-We present the measurements and analysis of laserinduced breakdown processes in dry air at a wavelength of 193 nm by focusing 180-mJ 10-MW high-power 193-nm UV ArF laser radiation onto a 30-μm-radius spot size. We examine pressures ranging from 40 torr to 5 atm, for laser power densities of 1 TW/cm 2 , well above the threshold power flux for air ionization. The breakdown threshold electric field is measured and compared with classical and quantum theoretical ionization models at this short wavelength. A universal scaling analysis of these results allows one to predict aspects of high-power microwave breakdown based on measured laser breakdown observations. Comparison of 193-nm laser-induced effective field intensities for air breakdown data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the collisional microwave scaled portion with good agreement regarding both pressure dependence and breakdown threshold electric fields. Using a laser shadowgraphy diagnostic technique, the plasma and shock-wave dynamics are analyzed. Blast shock-wave expansion of the plasma and laser-heated neutral gas is observed with average velocities of 47 km/s, and the temporal shock-wave velocity variation is used to determine electron temperature evolution just behind the shock wave. Index Terms-Air plasma, breakdown scaling, excimer laser, laser-induced plasma, shadowgraphy
Radiofrequency Initiation and Radiofrequency Sustainment of Laser Initiated Seeded High Pressure Plasmas" pp 526
Abstract. We examine radiofrequency initiation of high pressure(l-70 Ton) inductive plasma discharges in argon, nitrogen, air and organic seed gas mixtures. Millimeter wave interferometry, optical emission and antenna wave impedance measurements for double halfturn helix and helical inductive antennas are used to interpret the rf/plasma coupling, measure the densities in the range of 10 12 cra~3 and analyze the ionization and excited states of the gas mixtures. We have also carried out 193 nm excimer laser initiation of an organic gas seed plasma which is sustained at higher pressures(150' Torr) by radiofrequency coupling at 2.8 kW power levels
- …