23 research outputs found

    Coupled molecular switching processes in ordered mono- and multilayers of stimuli-sesponsive rotaxanes on gold surfaces

    Get PDF
    Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effect

    A photoswitchable rotaxane operating in monolayers on solid support

    No full text
    A novel photoswitchable rotaxane was synthesised and its switching behaviour in solution and on solid support was studied.</p

    Encapsulation of luminescent homoleptic [Ru(dpp)3] 2+-type chromophores within an amphiphilic dendritic environment

    No full text
    A new series of homoleptic metallodendrimers has been synthesized through ruthenium-metal complexation by dendritically modified bathophenanthroline ligands. The presence of hydrophilic oligo(ethylene glycol) groups on the surface of the monodisperse metal complexes enabled the solubilization of all of the fractal species in a wide range of solvents, including water. The specific properties of all of these compounds have been systematically investigated by using photophysical techniques as a function of the generation number. Accordingly, the encapsulation of the highly luminescent [Ru(dpp) 3]2+-type (dpp=4,7-diphenyl-1,10-phenanthroline) core unit within a dendritic microenvironment creates a powerful means to shield the center from dioxygen quenching. This shielding effect, as exerted on the phosphorescent ruthenium-derived center, is reflected by enhanced emission intensities and extended excited-state lifetimes that are close to the highest values reported so far, even in an air-equilibrated aqueous medium. Interestingly, when inspecting the largest dendritic assembly, that is, the third-generation assembly, significant drops in emission quantum yields and lifetimes are observed. This anomalous behavior has been attributed to the folding of the branches towards the luminescent core. It's all about protection: Efficient shielding from dioxygen quenching has been observed for a new series of amphiphilic ruthenium-bathophenanthroline dendrimers (see figure). Photophysical studies revealed a positive dendritic effect, as evidenced by elongated excited-state lifetimes and increased emission quantum yields
    corecore