33 research outputs found

    Explicit Global Coordinates for Schwarzschild and Reissner-Nordstroem

    Get PDF
    We construct coordinate systems that cover all of the Reissner-Nordstroem solution with m>|q| and m=|q|, respectively. This is possible by means of elementary analytical functions. The limit of vanishing charge q provides an alternative to Kruskal which, to our mind, is more explicit and simpler. The main tool for finding these global charts is the description of highly symmetrical metrics by two-dimensional actions. Careful gauge fixing yields global representatives of the two-dimensional theory that can be rewritten easily as the corresponding four-dimensional line elements.Comment: 12 pages, 3 Postscript figures, sign error in Eq. (37) and below corrected, references and Note added; to appear in Class. Quantum Gra

    Generalized 2d dilaton gravity with matter fields

    Get PDF
    We extend the classical integrability of the CGHS model of 2d dilaton gravity [1] to a larger class of models, allowing the gravitational part of the action to depend more generally on the dilaton field and, simultaneously, adding fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we provide the complete solution of the most general dilaton-dependent 2d gravity action coupled to chiral fermions. The latter analysis is generalized to a chiral fermion multiplet with a non-abelian gauge symmetry as well as to the (anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p. 26, referring to a work of S. Solodukhin, reformulated; references adde

    Classical and Quantum Gravity in 1+1 Dimensions, Part III: Solutions of Arbitrary Topology

    Full text link
    All global solutions of arbitrary topology of the most general 1+1 dimensional dilaton gravity models are obtained. We show that for a generic model there are globally smooth solutions on any non-compact 2-surface. The solution space is parametrized explicitly and the geometrical significance of continuous and discrete labels is elucidated. As a corollary we gain insight into the (in general non-trivial) topology of the reduced phase space. The classification covers basically all 2D metrics of Lorentzian signature with a (local) Killing symmetry.Comment: 39 pages, 22 figures, uses AMSTeX, extended version of former chapter 7 (Gravitational Kinks) now available as gr-qc/9707053, problem with figure 6 fixe

    Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

    Full text link
    We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.Comment: 24 pages, no figures, some sign errors in Eqs. 52--59 have been corrected (according to the Erratum

    On the Canonical Reduction of Spherically Symmetric Gravity

    Get PDF
    In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) spherically symmetric general relativity. The essential technical ingredient in Kuchar's analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter MSM_{S}, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchar's canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent boost to the rest frame," where the ``rest frame'' is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kucha\v{r}'s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure

    Virtual black hole phenomenology from 2d dilaton theories

    Get PDF
    Equipped with the tools of (spherically reduced) dilaton gravity in first order formulation and with the results for the lowest order S-matrix for s-wave gravitational scattering (P. Fischer, D. Grumiller, W. Kummer, and D. Vassilevich, gr-qc/0105034) new properties of the ensuing cross-section are discussed. We find CPT invariance, despite of the non-local nature of our effective theory and discover pseudo-self-similarity in its kinematic sector. After presenting the Carter-Penrose diagram for the corresponding virtual black hole geometry we encounter distributional contributions to its Ricci-scalar and a vanishing Einstein-Hilbert action for that configuration. Finally, a comparison is done between our (Minkowskian) virtual black hole and Hawking's (Euclidean) virtual black hole bubbles.Comment: 17 pages, 13 figure

    Quantization of Two-Dimensional Gravity with Dynamical Torsion

    Get PDF
    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.Comment: 12 pages, LaTe

    Classical and Quantum Integrability of 2D Dilaton Gravities in Euclidean space

    Full text link
    Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantisation in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case.Comment: 27 p., LaTeX, v2: included new refs. and a footnot
    corecore