3,974 research outputs found
Decoherence in a dynamical quantum phase transition
Motivated by the similarity between adiabatic quantum algorithms and quantum
phase transitions, we study the impact of decoherence on the sweep through a
second-order quantum phase transition for the prototypical example of the Ising
chain in a transverse field and compare it to the adiabatic version of Grovers
search algorithm, which displays a first order quantum phase transition. For
site-independent and site-dependent coupling strengths as well as different
operator couplings, the results show that (in contrast to first-order
transitions) the impact of decoherence caused by a weak coupling to a rather
general environment increases with system size (i.e., number of spins/qubits).
This might limit the scalability of the corresponding adiabatic quantum
algorithm.Comment: 14 pages, 9 figure
Discovery of Temperate Latitude Clouds on Titan
Until now, all the clouds imaged in Titan's troposphere have been found at far southern latitudes (60°-90° south). The occurrence and location of these clouds is thought to be the result of convection driven by the maximum annual solar heating of Titan's surface, which occurs at summer solstice (2002 October) in this south polar region. We report the first observations of a new recurring type of tropospheric cloud feature, confined narrowly to ~40° south latitude, which cannot be explained by this simple insolation hypothesis. We propose two classes of formation scenario, one linked to surface geography and the other to seasonally evolving circulation, which will be easily distinguished with continued observations over the next few years
Equation of motion method for Full Counting Statistics: Steady state superradiance
For the multi-mode Dicke model in a transport setting that exhibits
collective boson transmissions, we construct the equation of motion for the
cumulant generating function. Approximating the exact system of equations at
the level of cumulant generating function and system operators at lowest order,
allows us to recover master equation results of the Full Counting Statistics
for certain parameter regimes at very low cost of computation. The
thermodynamic limit, that is not accessible with the master equation approach,
can be derived analytically for different approximations.Comment: 7 pages, 3 figures, revised version, accepted by PR
A Possible Massive Asteroid Belt Around zeta Lep
We have used the Keck I telescope to image at 11.7 microns and 17.9 microns
the dust emission around zeta Lep, a main sequence A-type star at 21.5 pc from
the Sun with an infrared excess. The excess is at most marginally resolved at
17.9 microns. The dust distance from the star is probably less than or equal to
6 AU, although some dust may extend to 9 AU. The mass of observed dust is
\~10^22 g. Since the lifetime of dust particles is about 10,000 years because
of the Poytning-Robertson effect, we robustly estimate at least 4 10^26 g must
reside in parent bodies which may be asteroids if the system is in a steady
state and has an age of ~300 Myr. This mass is approximately 200 times that
contained within the main asteroid belt in our solar system.Comment: 12 pages, 3 figures, ApJL in pres
Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields
We calculate the radiation resulting from the Unruh effect for strongly
accelerated electrons and show that the photons are created in pairs whose
polarizations are maximally entangled. Apart from the photon statistics, this
quantum radiation can further be discriminated from the classical (Larmor)
radiation via the different spectral and angular distributions. The signatures
of the Unruh effect become significant if the external electromagnetic field
accelerating the electrons is not too far below the Schwinger limit and might
be observable with future facilities. Finally, the corrections due to the
birefringent nature of the QED vacuum at such ultra-high fields are discussed.
PACS: 04.62.+v, 12.20.Fv, 41.60.-m, 42.25.Lc.Comment: 4 pages, 1 figur
Generalized 2d dilaton gravity with matter fields
We extend the classical integrability of the CGHS model of 2d dilaton gravity
[1] to a larger class of models, allowing the gravitational part of the action
to depend more generally on the dilaton field and, simultaneously, adding
fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we
provide the complete solution of the most general dilaton-dependent 2d gravity
action coupled to chiral fermions. The latter analysis is generalized to a
chiral fermion multiplet with a non-abelian gauge symmetry as well as to the
(anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p.
26, referring to a work of S. Solodukhin, reformulated; references adde
Direct measurement of the size of 2003 UB313 from the Hubble Space Telescope
We have used the Hubble Space Telescope to directly measure the angular size
of the large Kuiper belt object 2003 UB313. By carefully calibrating the point
spread function of a nearby field star, we measure the size of 2003 UB313 to be
34.31.4 milliarcseconds, corresponding to a diameter of 2400100 km or
a size % larger than Pluto. The V band geometric albedo of 2003 UB313 is
%. The extremely high albedo is consistent with the frosty methane
spectrum, the lack of red coloring, and the lack of observed photometric
variation on the surface of 2003 UB313. Methane photolysis should quickly
darken the surface of 2003 UB313, but continuous evaporation and redeposition
of surface ices appears capable of maintaining the extreme alebdo of this body
Allelomimesis as universal clustering mechanism for complex adaptive systems
Animal and human clusters are complex adaptive systems and many are organized
in cluster sizes that obey the frequency-distribution . Exponent describes the relative abundance of the cluster
sizes in a given system. Data analyses have revealed that real-world clusters
exhibit a broad spectrum of -values, . We show that allelomimesis is a
fundamental mechanism for adaptation that accurately explains why a broad
spectrum of -values is observed in animate, human and inanimate cluster
systems. Previous mathematical models could not account for the phenomenon.
They are hampered by details and apply only to specific systems such as cities,
business firms or gene family sizes. Allelomimesis is the tendency of an
individual to imitate the actions of its neighbors and two cluster systems
yield different values if their component agents display different
allelomimetic tendencies. We demonstrate that allelomimetic adaptation are of
three general types: blind copying, information-use copying, and non-copying.
Allelomimetic adaptation also points to the existence of a stable cluster size
consisting of three interacting individuals.Comment: 8 pages, 5 figures, 2 table
Titan imagery with Keck adaptive optics during and after probe entry
We present adaptive optics data from the Keck telescope, taken while the Huygens probe descended through Titan's atmosphere and on the days following touchdown. No probe entry signal was detected. Our observations span a solar phase angle range from 0.05° up to 0.8°, with the Sun in the west. Contrary to expectations, the east side of Titan's stratosphere was usually brightest. Compiling images obtained with Keck and Gemini over the past few years reveals that the east-west asymmetry can be explained by a combination of the solar phase angle effect and an enhancement in the haze density on Titan's morning hemisphere. While stratospheric haze was prominent over the northern hemisphere, tropospheric haze dominated the south, from the south pole up to latitudes of âŒ45°S. At 2.1 ÎŒm this haze forms a polar cap, while at 1.22 ÎŒm it appears in the form of a collar at 60°S. A few small clouds were usually present near the south pole, at altitudes of 30â40 km. Our narrowband J,H,K images of Titan's surface compare extremely well with that obtained by Cassini ISS, down to the small-scale features. The surface contrast between dark and bright areas may be larger at 2 ÎŒm than at 1.6 and 1.3 ÎŒm, which would imply that the dark areas may be covered by a coarser-grained frost than the bright regions and/or that there is additional 2 ÎŒm absorption there
- âŠ