2 research outputs found
Recommended from our members
The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental
model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is
unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the
genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with
simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases.
Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into
earlyeukaryoteevolution.Wedescribeextensiveuseofhistidinekinase-basedtwo-componentsystemsandtyrosinekinasesignaling,
the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide
repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes.
Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of
Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases inAcanthamoeba and Physarum
as representatives of two distantly related subdivisions ofAmoebozoa argues against the later emergence of tyrosine kinase signaling
in the opisthokont lineage and also against the acquisition by horizontal gene transfe
Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work