4 research outputs found

    The role of wingbeat frequency and amplitude in flight power

    Get PDF
    Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone

    Augmenting printed school atlases with thematic 3D maps

    No full text
    Digitalization in schools requires a rethinking of teaching materials and methods in all subjects. This upheaval also concerns traditional print media, like school atlases used in geography classes. In this work, we examine the cartographic technological feasibility of extending a printed school atlas with digital content by augmented reality (AR). While previous research rather focused on topographic three-dimensional (3D) maps, our prototypical application for Android tablets complements map sheets of the Swiss World Atlas with thematically related data. We follow a natural marker approach using the AR engine Vuforia and the game engine Unity. We compare two workflows to insert geo-data, being correctly aligned with the map images, into the game engine. Next, the imported data are transformed into partly animated 3D visualizations, such as a dot distribution map, curved lines, pie chart billboards, stacked cuboids, extruded bars, and polygons. Additionally, we implemented legends, elements for temporal and thematic navigation, a screen capture function, and a touch-based feature query for the user interface. We evaluated our prototype in a usability experiment, which showed that secondary school students are as effective, interested, and sustainable with printed as with augmented maps when solving geographic tasks.ISSN:2414-408

    Augmenting Printed School Atlases with Thematic 3D Maps

    No full text
    Digitalization in schools requires a rethinking of teaching materials and methods in all subjects. This upheaval also concerns traditional print media, like school atlases used in geography classes. In this work, we examine the cartographic technological feasibility of extending a printed school atlas with digital content by augmented reality (AR). While previous research rather focused on topographic three-dimensional (3D) maps, our prototypical application for Android tablets complements map sheets of the Swiss World Atlas with thematically related data. We follow a natural marker approach using the AR engine Vuforia and the game engine Unity. We compare two workflows to insert geo-data, being correctly aligned with the map images, into the game engine. Next, the imported data are transformed into partly animated 3D visualizations, such as a dot distribution map, curved lines, pie chart billboards, stacked cuboids, extruded bars, and polygons. Additionally, we implemented legends, elements for temporal and thematic navigation, a screen capture function, and a touch-based feature query for the user interface. We evaluated our prototype in a usability experiment, which showed that secondary school students are as effective, interested, and sustainable with printed as with augmented maps when solving geographic tasks

    Comparison of the Aircraft Noise Calculation Programs sonAIR, FLULA2 and AEDT with Noise Measurements of Single Flights

    No full text
    As aircraft noise affects large areas around airports, noise exposure calculations need to be highly accurate. In this study, we compare noise exposure measurements with calculations of several thousand single flights at Zurich and Geneva airports, Switzerland, of three aircraft noise calculation programs: sonAIR, a next-generation aircraft noise calculation program, and the two current best-practice programs FLULA2 and AEDT. For one part of the flights, we had access to flight data recorder (FDR) data, which contain flight configuration information that sonAIR can account for. For the other part, only radar data without flight configuration information were available. Overall, all three programs show good results, with mean differences between calculations and measurements smaller than ±0.5 dB in the close range of the airports. sonAIR performs clearly better than the two best-practice programs if FDR data are available. However, in situations without FDR data (reduced set of input data), sonAIR cannot exploit its full potential and performs similarly well as FLULA2 and AEDT. In conclusion, all three programs are well suited to determine averaged noise metrics resulting from complex scenarios consisting of many flights (e.g., yearly air operations), while sonAIR is additionally capable to highly accurately reproduce single flights in greater detail
    corecore