7 research outputs found

    A trans-ancestral meta-analysis of Genome-wide Association Studies reveals loci associated with childhood obesity

    Get PDF
    Although hundreds of GWAS-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity, and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of thirty studies consisting of up to 13,005 cases (≥95th percentile of BMI achieved 2-18 years old) and 15,599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1,888 cases and 4,689 controls from seven cohorts of European and North/South American ancestry. In addition to observing eighteen previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene: METTL15). The variant was nominally associated in only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than ten SNPs (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci

    Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes

    Get PDF
    This is the final version. Available from BMC via the DOI in this record. Availability of data and materials GWAS summary data will be deposited at the EGG website (https://egg-consortium.org/) at publication. Individual study data are available from the corresponding author on reasonable request.Abstract Background: Head circumference is associated with intelligence and tracks from childhood into adulthood. Methods: We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age. Results: Seven loci reached genome-wide signifcance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes. Conclusions: The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics.Wellcome TrustSimons FoundationWellcome TrustMRC & WTUniversity of Southern DenmarkMax Planck core societ

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI

    Viral metagenomics in drug-naive, first-onset schizophrenia patients with prominent negative symptoms

    No full text
    Although several studies suggest a virus or (endogenous) retrovirus involvement at the time of onset of schizophrenia, the unequivocal identification of one or more infectious agents, by means of an undirected catch-all technique, has never been conducted. In this study VIDISCA, a virus discovery method, was used in combination with Roche-454 high-throughput sequencing as a tool to determine the possible presence of viruses (known or unknown) in blood of first-onset drugs-naive schizophrenic patients with prominent negative symptoms. Two viruses (the Anellovirus Torque Teno virus and GB virus C) were detected. Both viruses are commonly found in healthy individuals and no clear link with disease was ever established. Viruses from the family Anelloviridae were also identified in the control population (4.8%). Besides, one patient sample was positive for human endogenous retroviruses type K (HML-2) RNA but no specific predominant strain was detected, instead 119 different variants were found. In conclusion, these findings indicate no evidence for viral or endogenous retroviral involvement in sera at the time of onset of schizophrenia. (C) 2015 Elsevier Ireland Ltd. All rights reserved

    Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

    No full text
    Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family
    corecore