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Abstract 

 

Although hundreds of GWAS-implicated loci have been reported for adult obesity-

related traits, less is known about the genetics specific for early-onset obesity, and with 

only a few studies conducted in non-European populations to date. Searching for 

additional genetic variants associated with childhood obesity, we performed a trans-

ancestral meta-analysis of thirty studies consisting of up to 13,005 cases (≥95th percentile 

of BMI achieved 2-18 years old) and 15,599 controls (consistently <50th percentile of 

BMI) of European, African, North/South American and East Asian ancestry. Suggestive 

loci were taken forward for replication in a sample of 1,888 cases and 4,689 controls 

from seven cohorts of European and North/South American ancestry. In addition to 

observing eighteen previously implicated BMI or obesity loci, for both early and late 

onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest 

gene: METTL15). The variant was nominally associated in only the European subgroup 

analysis but had a consistent direction of effect in other ethnicities. We then utilized 

trans-ancestral Bayesian analysis to narrow down the location of the probable causal 

variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able 

to narrow down the causative variant at four known loci to fewer than ten SNPs (FAIM2, 

GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has 

enabled us to both identify an additional pediatric obesity locus and further fine-map 

existing loci.  
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Introduction 

 

Obesity is having a dramatic impact on modern societies, leading to substantial health 

issues, with an overall prevalence among children already greater than 20% in many 

populations, including the USA(1). Obesity, considerably contributes to mortality in the 

United States, representing a key risk factor for cardiometabolic and other chronic 

diseases.  

The complex trait of obesity is the outcome of an interaction between environmental 

and genetic risk components(2). An excess in adipose tissue is commonly seen as an 

imbalance between energy uptake and utilization, and although now viewed as a disease 

may have historically conferred an advantage when food availability was restricted and 

high levels of physical activity were normal(3). Overall, obesity affects approximately 50 

million girls and 74 million boys worldwide(1); most crucially, the prevalence of 

childhood obesity is on the increase worldwide(1), meaning that the known comorbidities 

are also on the rise across many ethnicities(2). 

While environmental factors clearly play a role in the pathogenesis of childhood 

obesity, there is also strong evidence for a genetic component to obesity risk from twin 

and family studies, with heritability estimates for BMI being as high as 70%(4) . Large-

scale genome-wide association studies (GWAS) have now reported many hundreds of 

loci associated with BMI/obesity in adults, and principally in populations of European 

ancestry(6). However, some studies have investigated the genome-wide genetics of 

obesity and/or BMI in children(7-12), but these did not address sex-specific or trans-

ancestral associations.  
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In childhood and adolescence, BMI varies widely with age. To that end, working with 

the Center for Disease Control and Prevention definition of childhood obesity as being at 

or above the 95th percentile of BMI for age(13), we conducted a large-scale trans-

ancestral GWAS meta-analysis of the trait to uncover additional loci in order to provide 

further biological insight into this condition. 
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Results 

 

In order to identify novel genetic variants associated with childhood obesity, we 

performed a two-stage trans-ancestral meta-analysis consisting of: Stage 1) thirty 

genome-wide genotyped cohorts augmented with genetic data imputed to the 1000G-

reference panel for discovery efforts, and Stage 2) seven genotyped cohorts queried for 

SNPs which attained suggestive association in Stage 1 for the replication effort. The 

Stage 1 effort consisted of 13,005 cases (≥95th percentile of BMI achieved between 2 and 

18 years old) and 15,599 controls (<50th percentile of BMI consistent throughout all 

measures during childhood). Stage 2 consisted of 1,888 cases and 4,489 controls. Each 

cohort was classified into four different groups based on ancestral makeup (either self-

report or determined by PCA): European (Stage 1: 8,613 cases and 12,696 controls; Stage 

2: 921 cases and 1,930 controls), African (Stage 1: 3,282 cases and 1,456 controls), 

American/Hispanic (Stage 1: 986 cases and 993 controls; Stage 2: 967 cases and 2759 

controls) and East Asian group (Stage 1: 124 cases and 454 controls - consisting of East 

Asian ancestry samples from the United States and Singapore). The study characteristics 

are outlined in Table S1. 

 

Stage 1: primary meta-analysis 

Inverse-variance weighted fixed-effects meta-analyses, as implemented with 

METAL, within each of the four major continental ancestries was used to estimate effect 

sizes for the input into the trans-ancestral analysis using MANTRA. Sentinel SNPs were 

chosen by examining blocks of associated SNPs and choosing the SNP with the 
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maximum Bayes factor (BF) in each block. New blocks were determined by distance 

greater than 100Kb between successive SNPs with a log10 BF >= 4. The trans-ancestral 

analysis yielded a total of 82 independent loci reaching suggestive association (log10 BF 

>= 4.0) while there were 11 independent loci reaching genome-wide association (log10BF 

>= 6.0) (Table S2). A log10 BF of 6.0 is equivalent to a p-value of 5.0x10-8. A log10 BF of 

4.0 is equivalent to a p-value of 5.0x10-6. The Manhattan plot of the trans-ancestral meta-

analysis is shown in Figure 1. 

 

Stage 2: replication 

The 82 independent SNPs found in the first stage of the analysis were taken forward 

and genotyped in the Stage 2 cohorts. In total, following the combined Stage 1 and Stage 

2 effort, eighteen loci achieved genome-wide significance (log10 Bayes Factor >= 6.0) in 

the meta-analysis (Table 1). Of the eighteen genome-wide significant loci found in the 

analysis, eight SNPs (TNNI3K, SEC16B, TMEM18, ADCY3, FAIM2, FTO, HOXB5 and 

MC4R) were found to be in linkage disequilibrium (LD) (r2 >= 0.2, European 1000 

genomes project phase 3) with variants previously shown to be associated with childhood 

obesity(7). Two SNPs at the GNPDA2 and TFAP2B loci were in LD (r2 >= 0.2, European 

1000 genomes project phase 3) with variants previously shown to be associated with 

childhood BMI(9). Six of the SNPs at loci (RANBP17, CALCR, BDNF, ADCY9, and both 

variants near CBLN4) are in LD (r2 >= 0.2, European 1000 Genomes Project Phase 3) 

with variants associated in the most recent adult BMI meta-analysis(6). After a search of 

the GWAS catalog, we found that two of the SNPs at two loci (GPR1 and METTL15) 

were not in LD (r2 < 0.2) with any variant known to be associated with childhood or adult 
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BMI or related traits in the GWAS catalogue. But it is noted that the GPR1 variant had an 

r2 = 0.19 with a variant we reported on previously(9) (rs13387838) as associated with 

childhood BMI. To further assess the novelty of the GPR1 variant, we performed an 

approximate conditional regression analysis of rs114670539 conditioning on rs13387838. 

The P-value of rs114670539 changed from 4.52x10-8 pre-conditioning to 5.94x10-8 post-

conditioning in the Stage 1 European samples, suggesting that it is indeed independent of 

rs13387838. With a subsequent search of Phenoscanner, however, we found that the 

GPR1 variant (rs114670539) yielded a genome-wide association to “comparative body 

size at age 10” in an unpublished UK Biobank GWAS (https://www.nealelab.is/uk-

biobank). The novel METTL15 variant (rs10835310) showed a genome-wide significant 

association to “comparative height size at age 10” in the same unpublished UK BioBank 

GWAS, but no genome-wide association to any metabolic traits. A regional association 

plot for the novel locus in the European sub-analysis for the genome-wide Stage 1 

analysis is shown in Figures S1.  

Subsequent conditional analyses revealed a novel independent signal at TMEM18 

(rs62104180, r2=0.0008 with the previously reported rs7579427; MAF<5%) Table 1. A 

review of Phenoscanner revealed this variant to be associated with a number of metabolic 

traits in the UK Biobank, including BMI. 

 

Heritability and Genetic Correlation Analyses 

We sought to estimate the genome-wide common SNP heritability of childhood 

obesity and to calculate the genetic correlation of childhood obesity to other diseases. We 

used the LD score regression web interface called LDhub(14) to measure the common 
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SNP heritability of childhood obesity (h2 = 0.33) in the European summary statistics 

only, given that it was the only dataset of sufficient sample size. Out of 219 traits with 

measured heritability, childhood obesity was ranked in the top 10% of traits. Childhood 

obesity had a similar common SNP heritability to three pubertal growth traits (Difference 

in height between adolescence and adulthood, age 14, h2 = 0.45; Height, Females at age 

10 and males at age 12, h2 = 0.43; Difference in height between childhood and adulthood, 

age 8, h2 = 0.33) but adult BMI, h2 = 0.19, had a lower heritability. We also used LD 

score regression to assess the degree of genetic correlation between the European meta-

analysis and other traits. The European meta-analysis summary statistics were uploaded 

to LDhub and compared to 235 other traits that were present on the file server. Statistical 

significance and genetic correlation were assessed with LDSC. Out of the 235 traits 

comparisons, 32 were significant after Bonferroni correction (P < 0.00021). There were 

traits that were positively or negatively genetically correlated with childhood obesity. 

While the most significant positive genetic correlation was with adult BMI (rg = 0.84, p = 

3.4×10-91) and the most significant negative genetic correlation was with age at menarche 

(rg = -0.40, p = 1.5×10-24, Table S3), there were other less obvious genetic correlations 

such as negative genetic correlations with college completion and years of schooling and 

positive genetic correlations with excessive daytime sleepiness and squamous cell lung 

carcinoma. 

We also compared our results to the largest adult BMI GWAS dataset currently 

available. We used 698 independently associated SNPs from Yengo et al(6) to compare 

the effect sizes between adult BMI and childhood obesity. We leveraged SNPs that were 

genome-wide significant in single SNP analyses. We extracted the effect sizes for these 
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SNPs from our European Stage 1 analysis and compared them to the adult BMI effect 

sizes (correlation = 0.76) Figure S2. 562 out of 698 SNPs associated with adult BMI had 

the same direction of effect in childhood obesity. 

 

Functional Analysis and Fine Mapping 

The trans-ancestral meta-analysis results were subsequently used to fine-map the 

genome-wide significant loci through credible set analysis. Four loci had 99% credible 

sets with fewer than ten SNPs (FAIM2, GNPDA2, MC4R and SEC16B loci). Even though 

the non-European samples formed a minority in the analysis, they enabled refinement of 

the interval within each of the 99% credible sets; indeed, none of the four loci with 99% 

credible sets of fewer than ten SNPs in the trans-ancestral analysis had credible sets fewer 

than ten SNPs in the European-only analysis. The FAIM2 locus was refined to six SNPs, 

two of which are in the 3’ untranslated region of the gene, and all residing within a 17kb 

region on chromosome 12 (hg19: 50,246,252-50,263,148). The GNPDA2 locus also 

yielded six SNPs in the 99% credible set, all residing within 12kb of each other on 

chromosome 4 (hg19: 4,175,691-45,187,622). The signal near MC4R yielded four SNPs 

in the 99% credible set residing within 31kb of each other on chromosome 18 (hg19: 

57,824,038-57,854,694). Finally, the SEC16B locus had five SNPs in the 99% credible 

set, which were all within 11kb of each other on chromosome 1 (hg19: 177,889,025-

177,899,121) (Table S4).  

All 21 of the variants in the four 99% credible sets were analyzed with the Ensembl 

Variant Effect Predictor(15) to access the enrichment of various functional groups in 

these sets. Intergenic variants were the most common predicted category with 43% of 
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variants, 21% of variants were labeled as downstream gene variants which lie 3’ of a 

gene. The downstream variants were concentrated around SEC16B and FAIM2. Variants 

located in regulatory regions accounted 15% of the variants intronic variants represented 

9% of variants. 3’ untranslated region variants of FAIM2 represented 9% of variants and 

one variant was in a transcription factor binding site.  

Lastly, in order to attempt to place these signals in to a functional context, we 

investigated whether the suggestively associated variants were likely to share the same 

causal variant as an expression quantitative trait loci (eQTLs) of a nearby gene. We 

conducted colocalization analyses with GTEx v7 for all loci with log10BF>=4 (Table S5). 

This analysis yielded significant colocalizations at two loci across a range of tissues. The 

sentinel variant rs2206277 yielded a colocalization with an eQTL of TFAP2B in tibial 

nerve tissue, while rs4077678 showed significant colocalizations in numerous tissues. 

The most significant eQTL and tissue pair for rs4077678 was DNAJC27 in whole blood, 

ADCY3 in whole blood, CENPO in whole blood and DNAJC27-AS1 in brain cerebellum. 

The additional significant colocalizations can be found in Table S5. 
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Discussion 

 

Our trans-ancestral GWAS meta-analysis represents a large genome-wide survey of 

childhood obesity and allowed for the detection of loci not readily picked up in European 

only ancestral populations. We confirmed eighteen loci previously reported for childhood 

obesity or other metabolic phenotypes and identified one novel locus, namely at 

METTL15, associated with childhood obesity. Furthermore, the large overlap of at least 

nominally significant SNPs in both meta-analyses of pediatric obesity and adult BMI 

points to a shared genetic basis of these traits, at different times in the life course. The 

genetic correlation between childhood obesity and adult BMI was confirmed using LD-

score regression, along with a negative genetic correlation between childhood obesity and 

age at menarche. 

Although functional efforts are required to identify the actual effector genes at these 

loci, using similar approaches to what were applied to FTO locus which led to the 

implication of IRX3 and IRX5(16-19), no inferences could be made from eQTLs for our 

novel childhood obesity loci. For the novel locus METTL15, the actual effector gene may 

be the well-established adult obesity BDNF gene that resides in the same topologically 

associating domain (TAD). Furthermore, rs2749808 near CBLN4 gene is intergenic and 

may influence MC3R, given that it has already been strongly implicated in the 

pathogenesis of obesity(20, 21). We also further implicated TMEM18 as the effector gene 

at this locus given the independent signal plus the rarer variants (MAF<5%) in the same 

neighborhood. 
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Trans-ancestral meta-analysis is particularly valuable in fine-mapping loci to narrow 

down the area harboring the causal variant. This is due to the different LD patterns 

present in different ancestral populations. Despite known limitations to various fine-

mapping approaches (such as whether or not the same set of variants were present in all 

input datasets), using MANTRA and credible set analysis we were able to narrow down 

the potential causal variant to fewer than ten variants at four different loci (FAIM2, 

GNPDA2, MC4R and SEC16B). Using the colocalization method, we were able to narrow 

down the putative causal variants and causal tissues for the ADCY3 and TFAP2B loci. 

There are colocalized eQTLs for various tissues with these associated loci that will need 

to be followed up in the future. The ADCY3 locus is interesting in that there seems to be 

multiple genes (DNAJC2, ADCY3, CENPO and DNAJC27-AS1) colocalizing with the 

rs4077678 locus in multiple tissues (Whole Blood, Tibial Nerve, Skin, Adipose, Lung, 

Pituitary, Esophagus and Cerebellum). Whether this is due to coordination in all the 

genes in these tissues is an open question. 

As with our previous GWAS of childhood obesity, we continued to use the Center for 

Disease Control and Prevention (CDC) definition as at or above the 95th percentile of 

BMI for age(22), and indeed represents the general guide for clinical practice(23). This is 

driven by the fact that there is a complex relationship between BMI and body fat in 

childhood, where it varies over time and especially during puberty. The larger heritability 

of childhood obesity compared to adult BMI, along with the correlation of the effects of 

the two traits, suggests that childhood obesity is an effective proxy trait to find variants 

associated with adult BMI but at smaller sample sizes. 
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We have conducted a large-scale trans-ancestral two-stage GWAS for childhood 

obesity, where we robustly identified a novel childhood obesity. We have also shown that 

childhood is genetically very similar to adult BMI and with far greater numbers of 

samples we would most likely see more significant loci in common with the two 

phenotypes. As such, we have gained greater insights in the biology of obesity in the 

pediatric setting and these loci warrant further functional follow up in order to provide 

greater potential therapeutic insights. 
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Materials and Methods 

 

Research Subjects 

The Stage 1 dataset consisted of thirty genome-wide genotyped studies from various 

ethnicities with BMI measured in childhood (2-18 years old) except GOYA which 

included some time points between 18-19 years old. The participating cohorts in these 

analyses were: the Children’s Hospital of Philadelphia (CHOP) Study, the Generation R 

Study (GENR), the Singapore Cohort study Of the Risk factors for Myopia (SCORM), 

the Avon Longitudinal Study of Parents and Children (ALSPAC), the Western Australian 

Pregnancy Cohort (Raine) Study, the Amsterdam Born Children and their Development-

Genetic Enrichment (ABCD-GE) Study, the Copenhagen Prospective Study on Asthma 

in Childhood (COPSAC2000), the French Obesity of the Youth (OBE) Study, the 

German Infant Study on the influence of Nutrition Intervention PLUS environmental and 

genetic influences on allergy development (GINIplus) / the Influence of life-style factors 

on the development of the immune system and allergies in East and West Germany 

(LISA) Study, the Genetics of Overweight Young Adults (GOYA) Study, the Helsinki 

Birth Cohort Study (HBCS), the HOLBAEK Study, the INfancia y Medio Ambiente 

[Environment and Childhood] (INMA) Project, the Manchester Asthma and Allergy 

Study (MAAS), Northern Finland Birth Cohort 1986 (NFBC86), Northern Finland Birth 

Cohort 1966 (NFBC66), the Physical Activity and Nutrition in Children (PANIC) Study, 

1958 British Birth Cohort (1958BC), Young Finns Study (YFS), the Childrenʼs Health 

Study (CHS), and the MEXICO Study. Further information on the 1st stage cohorts is 

found in Table S1. 
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The Stage 2 dataset consisted of seven targeted genotype studies with BMI measured 

in childhood (ages 2-18 years) except the FAMILY study which included some time 

points less than 2 years of age. These studies were derived from the following 

participating cohorts: the Childrenʼs Health Study (CHS), the FAMILY study, The 

Norwegian Mother and Child Cohort Study (MoBa), the Santiago Longitudinal Study 

(SLS), the American Indians from Arizona Study and the VIVA la Familia Study 

(VIVA). 

 

Trait Definition 

Case and control definitions were based on national standard growth curves of BMI 

versus age for children from 2 to 18 years old. For instance, CHOP used the CDC 

standard growth curves (as featured in previous papers(13, 23)). The exception to this is 

the HBCS and 1958BC, as pediatric measures were made over two or six decades ago 

respectively so contemporary curves are not appropriate – in this case they generated 

their own reference curves. Cases were defined as an individual whose BMI is greater 

than or equal to the 95th percentile at any point in childhood. Controls were defined as an 

individual whose BMI was less than or equal to the 50th percentile consistently 

throughout childhood for all available measures. 

 

Statistical Analysis 

Each cohort was analyzed independently using a logistic regression framework (using 

an additive genetic model) where samples of different ancestry and samples genotyped on 

different SNP microarrays were analyzed separately. Eigenvectors calculated from 
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principal components analysis were used as covariates in the logistic regression by each 

cohort where appropriate. 

For the discovery stage of the meta-analysis, data from high-density SNP arrays in 

each cohort were imputed to the 1000 Genomes integrated variant Phase 1 release v3 

reference panel. Individual cohorts were responsible for their own pre-imputation sample 

exclusion criteria. Pre-imputation SNP quality control was applied by each individual 

cohort and it was recommended to remove SNPs with call rate < 95%, Hardy-Weinberg 

equilibrium P < 1x10-4, and a minor allele frequency (MAF) filter that incorporated the 

accuracy of the genotyping of lower frequency SNPs. Cohort specific quality control and 

deviations from the recommended analysis parameters can be found in Table S6. Post-

imputation quality control consisted of removing SNPs with MAF < 0.01, minor allele 

count < 10, r2_Hat < 0.3, proper_info < 0.4, or plink_info < 0.8 (depending on the 

software used for the statistical association analysis), as well as removing insertions and 

deletions. 

Ancestral-specific inverse variance weighted fixed-effect meta-analysis was 

performed using METAL. Genomic control was applied to each cohort prior to meta-

analysis and to the final meta-analysis statistics. SNPs were filtered out of the ancestral 

specific meta-analysis if the heterogeneity i-squared > 0.5 or if they were present in fewer 

than 50% of the total samples in the meta-analysis. Trans-ancestral meta-analysis was 

performed using MANTRA on the summary statistics obtained from the ancestral-

specific meta-analyses (Figure S3).  

Sentinel SNPs were selected at each locus from the suggestively associated results 

(log10 Bayes’ factor > 4) as the SNP at each locus with the largest Bayes factor in the 
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trans-ancestral results to maximize reproducibility across ethnicities. A locus was defined 

as a collection of SNPs whose next physically closest suggestively associated SNP was 

within 100kb. This collection of SNPs were tested for association in the Stage 2 dataset. 

The Stage 2 dataset was then combined with the Stage 1 dataset to test for association 

in the ancestral specific analyses and in the overall trans-ancestral analysis. The 

combined Stage 1 + Stage 2 results which resulted in a genome-wide significant results 

(log10 Bayes’ factor > 6) are shown in Table 1. Stage 2 findings were only evaluated 

when combined with Stage 1, and not independently given the small sample size relative 

to Stage 1. 

Sentinel SNPs that achieved genome-wide significance were queried against the 

GWAS catalogue and other available studies within Phenoscanner(25). A sentinel variant 

achieving P< 5.0x10-8 in a prior metabolic GWAS was considered already discovered.  

 

Conditional Regression 

GCTA was used for pseudo-conditional regression analysis to identify variants 

independently associated with childhood obesity at the genome-wide significance level 

(trans-ancestral log10 Bayes factor > 6). The CHOP African American, European 

American, Hispanic, and East Asian samples were used to estimate the LD in GCTA. The 

genome-wide significant sentinel SNPs from the Stage 1 analysis were used as 

conditioning variants for the Stage 1 summary statistics. The ancestral-specific 

conditional analysis results were then analyzed in MANTRA to identify trans-ancestral 

significance. The top genome-wide significant SNP in the resulting conditional analysis 

results was then added into the list of conditioning SNPs to be analyzed again. When 

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article-abstract/doi/10.1093/hm
g/ddz161/5528371 by Im

perial C
ollege London Library user on 24 Septem

ber 2019



there were no more genome-wide significant SNPs, the conditional regression was then 

halted. A separate pseudo-conditional regression analysis was carried out by conditioning 

rs114670539 on rs13387838 using the CHOP European American cohort to estimate LD. 

 

LD Score Regression 

LD score regression was performed using the LD Hub website interface 

(http://ldsc.broadinstitute.org/ldhub). The results from the European only meta-analysis 

were used for the LD score regression. Childhood obesity was compared against every 

phenotype available on LD Hub with the exception of the UK Biobank phenotypes and 

the previous childhood obesity meta-analysis. 

 

eQTL Analysis Colocalization 

We used coloc (with default parameters) to perform a Bayesian colocalization 

analysis comparing the meta-analysis results with GTEX version 7. We used variants 

with a log10 Bayes’ factor >= 4 in the stage 1 analysis with 47 tissues from GTEX in the 

colocalization analysis. GWAS Bayes factors were used directly as input, while eQTL 

effect sizes and standard errors were used to estimate approximate Bayes factors for 

input. A significant colocalization was defined as PP.H3.abf + PP.H4.abf > 0.99 and 

PP.H4.abf / PP.H3.abf > 5(26). PP.H3.abf is defined as the posterior probability of 2 

distinct causal variants. PP.H4.abf is defined as the posterior probability of 1 common 

causal variant.  
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Credible Set Analysis 

 The script credible_set_analysis.py located at https://github.com/edm1/Credible-

set-analysis/blob/master/credible_set_analysis.py was used to calculate the 99% credible 

sets for every genome-wide significant locus. The sum of the posterior probabilities was 

calculated from a sorted list of the most significant Bayes’ factors until the cumulative 

sum was equal to or greater than 0.99. This set of SNPs was then considered the 99% 

credible set. 
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Table 1: Top independent novel and known SNPs that reached genome-wide significance (log10 Bayes Factor >= 6) in the conditional 

or trans-ancestral meta-analyses. Betas and standard errors (SE) are shown for each ancestral specific sub-analysis. The heterogeneity 

(Het) of the Bayes’ Factor (BF) is also shown. If the variant (or in LD (r2 > 0.2)) was previously found in a metabolic phenotype, that 

phenotype is shown. “--” indicates that the variant did not pass quality control in that ancestral grouping. The first allele is the effect 

allele for which the beta applies. 
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Legends to Figures 

Figure 1: Manhattan plot of the trans-ancestral meta-analysis of the childhood obesity 

Stage 1 results. Bayes’ factors (BF) less than 0 have been represented by a value of 0. 

The y-axis is the log10 of the BF. Sentinel SNPs from loci that achieved at least log10 BF 

>= 4 were taken forward to Stage 2. 
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