41 research outputs found

    Size Matters: Spleen and Lung Volumes Predict Performance in Human Apneic Divers

    Get PDF
    Humans share with seals the ability to contract the spleen and increase circulating hematocrit, which may improve apneic performance by enhancing gas storage. Seals have large spleens and while human spleen size is small in comparison, it shows great individual variation. Unlike many marine mammals, human divers rely to a great extent on lung oxygen stores, but the impact of lung volume on competitive apnea performance has never been determined. We studied if spleen- and lung size correlated with performance in elite apnea divers. Volunteers were 14 male apnea world championship participants, with a mean (SE) of 5.8 (1.2) years of previous apnea training. Spleen volume was calculated from spleen length, width, and thickness measured via ultrasound during rest, and vital capacity via spirometry. Accumulated competition scores from dives of maximal depth, time, and distance were compared to anthropometric measurements and training data. Mean (SE) diving performance was 75 (4) m for constant weight depth, 5 min 53 (39) s for static apnea and 139 (13) m for dynamic apnea distance. Subjects’ mean height was 184 (2) cm, weight 82 (3) kg, vital capacity (VC) 7.3 (0.3) L and spleen volume 336 (32) mL. Spleen volume did not correlate with subject height or weight, but was positively correlated with competition score (r = 0.57; P < 0.05). Total competition score was also positively correlated with VC (r = 0.54; P < 0.05). The three highest scoring divers had the greatest spleen volumes, averaging 538 (53) mL, while the three lowest-scoring divers had a volume of 270 (71) mL (P < 0.01). VC was also greater in the high-scorers, at 7.9 (0.36) L as compared to 6.7 (0.19) L in the low scorers (P < 0.01). Spleen volume was reduced to half after 2 min of apnea in the highest scoring divers, and the estimated resting apnea time gain from the difference between high and low scorers was 15 s for spleen volume and 60 s for VC. We conclude that both spleen- and lung volume predict apnea performance in elite divers

    Spleen Contraction During Sudden Eupneic Hypoxia Elevates Hemoglobin Concentration

    Get PDF
    The spleen contracts progressively during moderate normobaric hypoxia exposure of 20 min, which elevates hemoglobin concentration (Hb). However, acute hypoxia exposure could be shorter and more severe when oxygen systems fail during, e.g., high-altitude sky diving, aircraft cabin pressure drop, balloon flights, extreme altitude climbing, and in some maladies. We aimed to evaluate the speed and magnitude of spleen contraction during short exposure to extreme eupneic hypoxia and its subsequent recovery on oxygen. Eight female and seven male volunteers were exposed to normobaric hypoxia (10% oxygen) for 10 min during sitting rest, followed by 10 min on 100% oxygen. Heart rate (HR), arterial oxygen saturation (SpO(2)), and mean arterial blood pressure (MAP) were measured continuously. The spleen was measured via ultrasonic imaging every minute for volume calculations, and venous blood samples were drawn before and after exposure for hemoglobin concentration (Hb). Mean (SD) spleen volume was 279 (115) mL before exposure, 219 (75) mL (21% reduction; P = 0.005) at 3 min of exposure, and 201 (93) mL after 10 min exposure to hypoxia (28% reduction; P &lt; 0.001). Hb was 138.8 (7.6) g center dot L-1 before and 142.9 (8.1) g center dot L-1 after 10 min of exposure (2.9% increase; P &lt; 0.001). SpO(2) was 96.4 (1.7)% before exposure and 74.7 (8.4)% during the last minute of exposure (22.5% reduction; P &lt; 0.001). HR increased from 80 (14) to 90 (17) bpm during exposure (12% increase, P &lt; 0.05). MAP remained unchanged. After 10 min recovery on oxygen, values had been restored for spleen volume and Hb, while SpO(2) was higher and HR lower compared with before hypoxia exposure. We concluded that acute normobaric hypoxia of only 10 min caused significant spleen volume contraction with Hb increase. This rapid spleen response, evident already after 3 min of exposure, could have a protective effect during sudden exposure to severe hypoxia.&lt;/p&gt

    Using Underwater Pulse Oximetry in Freediving to Extreme Depths to Study Risk of Hypoxic Blackout and Diving Response Phases

    Get PDF
    Deep freediving exposes humans to hypoxia and dramatic changes in pressure. The effect of depth on gas exchange may enhance risk of hypoxic blackout (BO) during the last part of the ascent. Our aim was to investigate arterial oxygen saturation (SpO2) and heart rate (HR) in shallow and deep freedives, central variables, which have rarely been studied underwater in deep freediving. Four male elite competitive freedivers volunteered to wear a newly developed underwater pulse oximeter for continuous monitoring of SpO2 and HR during self-initiated training in the sea. Two probes were placed on the temples, connected to a recording unit on the back of the freediver. Divers performed one “shallow” and one “deep” constant weight dive with fins. Plethysmograms were recorded at 30 Hz, and SpO2 and HR were extracted. Mean ± SD depth of shallow dives was 19 ± 3 m, and 73 ± 12 m for deep dives. Duration was 82 ± 36 s in shallow and 150 ± 27 s in deep dives. All divers desaturated more during deeper dives (nadir 55 ± 10%) compared to shallow dives (nadir 80 ± 22%) with a lowest SpO2 of 44% in one deep dive. HR showed a “diving response,” with similar lowest HR of 42 bpm in shallow and deep dives; the lowest value (28 bpm) was observed in one shallow dive. HR increased before dives, followed by a decline, and upon resurfacing a peak after which HR normalized. During deep dives, HR was influenced by the level of exertion across different diving phases; after an initial drop, a second HR decline occurred during the passive “free fall” phase. The underwater pulse oximeter allowed successful SpO2 and HR monitoring in freedives to 82 m depth – deeper than ever recorded before. Divers’ enhanced desaturation during deep dives was likely related to increased exertion and extended duration, but the rapid extreme desaturation to below 50% near surfacing could result from the diminishing pressure, in line with the hypothesis that risk of hypoxic BO may increase during ascent. Recordings also indicated that the diving response is not powerful enough to fully override the exercise-induced tachycardia during active swimming. Pulse oximetry monitoring of essential variables underwater may be an important step to increase freediving safety.

    Human breath-hold diving ability and the underlying physiology

    No full text

    Spleen Contraction During Sudden Eupneic Hypoxia Elevates Hemoglobin Concentration

    No full text
    The spleen contracts progressively during moderate normobaric hypoxia exposure of 20 min, which elevates hemoglobin concentration (Hb). However, acute hypoxia exposure could be shorter and more severe when oxygen systems fail during, e.g., high-altitude sky diving, aircraft cabin pressure drop, balloon flights, extreme altitude climbing, and in some maladies. We aimed to evaluate the speed and magnitude of spleen contraction during short exposure to extreme eupneic hypoxia and its subsequent recovery on oxygen. Eight female and seven male volunteers were exposed to normobaric hypoxia (10% oxygen) for 10 min during sitting rest, followed by 10 min on 100% oxygen. Heart rate (HR), arterial oxygen saturation (SpO(2)), and mean arterial blood pressure (MAP) were measured continuously. The spleen was measured via ultrasonic imaging every minute for volume calculations, and venous blood samples were drawn before and after exposure for hemoglobin concentration (Hb). Mean (SD) spleen volume was 279 (115) mL before exposure, 219 (75) mL (21% reduction; P = 0.005) at 3 min of exposure, and 201 (93) mL after 10 min exposure to hypoxia (28% reduction; P &lt; 0.001). Hb was 138.8 (7.6) g center dot L-1 before and 142.9 (8.1) g center dot L-1 after 10 min of exposure (2.9% increase; P &lt; 0.001). SpO(2) was 96.4 (1.7)% before exposure and 74.7 (8.4)% during the last minute of exposure (22.5% reduction; P &lt; 0.001). HR increased from 80 (14) to 90 (17) bpm during exposure (12% increase, P &lt; 0.05). MAP remained unchanged. After 10 min recovery on oxygen, values had been restored for spleen volume and Hb, while SpO(2) was higher and HR lower compared with before hypoxia exposure. We concluded that acute normobaric hypoxia of only 10 min caused significant spleen volume contraction with Hb increase. This rapid spleen response, evident already after 3 min of exposure, could have a protective effect during sudden exposure to severe hypoxia.&lt;/p&gt

    Association Between Arterial Oxygen Saturation and Lung Ultrasound B-Lines After Competitive Deep Breath-Hold Diving

    No full text
    Breath-hold diving (freediving) is an underwater sport that is associated with elevated hydrostatic pressure, which has a compressive effect on the lungs that can lead to the development of pulmonary edema. Pulmonary edema reduces oxygen uptake and thereby the recovery from the hypoxia developed during freediving, and increases the risk of hypoxic syncope. We aimed to examine the efficacy of SpO2, via pulse-oximetry, as a tool to detect pulmonary edema by comparing it to lung ultrasound B-line measurements after deep diving. SpO2 and B-lines were collected in 40 freedivers participating in an international deep freediving competition. SpO2 was measured within 17 ± 6 min and lung B-lines using ultrasound within 44 ± 15 min after surfacing. A specific symptoms questionnaire was used during SpO2 measurements. We found a negative correlation between B-line score and minimum SpO2 (rs = −0.491; p = 0.002) and mean SpO2 (rs = −0.335; p = 0.046). B-line scores were positively correlated with depth (rs = 0.408; p = 0.013), confirming that extra-vascular lung water is increased with deeper dives. Compared to dives that were asymptomatic, symptomatic dives had a 27% greater B-line score, and both a lower mean and minimum SpO2 (all p &amp;lt; 0.05). Indeed, a minimum SpO2 ≤ 95% after a deep dive has a positive predictive value of 29% and a negative predictive value of 100% regarding symptoms. We concluded that elevated B-line scores are associated with reduced SpO2 after dives, suggesting that SpO2 via pulse oximetry could be a useful screening tool to detect increased extra-vascular lung water. The practical application is not to diagnose pulmonary edema based on SpO2 – as pulse oximetry is inexact – rather, to utilize it as a tool to determine which divers require further evaluation before returning to deep freediving

    Repeated apneas do not affect the hypercapnic ventilatory response in the short term.

    No full text
    Long-term training of breath-hold diving reduces the hypercapnic ventilatory response (HCVR), an index of the CO(2) sensitivity. The aim of the present study was to elucidate whether also short-term apnea training (repeating apneas with short intervals) reduces the HCVR, thereby being one contributing factor explaining the progressively increasing breath-holding time (BHT) with repetition of apneas. Fourteen healthy volunteers performed a series of five maximal-duration apneas with face immersion and two measurements of the HCVR, using the Read rebreathing method. The BHT increased by 43% during the series of apneas (P < 0.001). However, the slope of the HCVR test was not affected by the series of apneas, being 2.52 (SD 1.27) and 2.24 (SD 1.14) l min(-1) mmHg(-1) in the control test and in the test performed within 2 min after the last apnea of the series, respectively (NS). Thus, a change in the HCVR cannot explain the observed short-term training effect on BHT

    A living based on breath-hold diving in the Bajau Laut

    No full text
    Sea nomads or 'sea people,' namely the 'Bajau Laut' in the Philippines, Malaysia and Indonesia are skilled divers, and many Bajau Laut make a living from freediving. Men do most of the spearfishing, but women also dive, predominantly for gathering sea food. They start to dive at an early age and spend most days of their lives on and in the sea. Our objective was to study their diving and way of life, to reveal if modern humans have the physiological potential for making a living from breath-hold diving for fishing and gathering. Bajau Laut were visited for a total of nine months, during three periods from 2010-2013, in a combined physiological and social-Anthropological study. The diving physiology studies focused on a total of 10 male divers, whose working day diving while spearfishing was logged with time-depth loggers. One group of 5 divers were engaged in shallow (5-7 m) spearfishing with an underwater working time of 60%, when diving for 2-9 h. The other group of 5 divers went to a mean depth of 10 m and had an underwater working time of 50%, when diving for 3-9 h per day. During that time, between one and eight kilograms of coral fish, blow fish, moray eels and octopuses were caught, per diver. Seafood collected by the women included clams, crustaceans, sea weed and sea cucumbers. Life among the Bajau Laut was much like it was 25 years ago, although in some areas the fish stock is diminishing, making it necessary for the Bajau Laut to spend more time in the water to obtain the same quantity of fish. It was concluded that modern humans do possess the physiological qualities necessary for making a living from hunting-gathering via breath-hold diving

    Man's place among the diving mammals

    No full text
    corecore