477 research outputs found

    SSX MHD Plasma Wind Tunnel

    Get PDF
    A new turbulent plasma source at the Swarthmore Spheromak Experiment (SSX) facility is described. The MHD wind tunnel configuration employs a magnetized plasma gun to inject high-beta plasma into a large, well-instrumented, vacuum drift region. This provides unique laboratory conditions approaching that in the solar wind: there is no applied background magnetic field in the drift region and has no net axial magnetic flux; the plasma flow speed is on the order of the local sound speed (M ~ 1), so flow energy density is comparable to thermal energy density; and the ratio of thermal to magnetic pressure is of order unity (plasma β ~ 1) so thermal energy density is also comparable to magnetic energy density. Results presented here and referenced within demonstrate the new capabilities and show how the new platform is proving useful for fundamental plasma turbulence studies

    Possible Signatures Of Dissipation From Time-Series Analysis Techniques Using A Turbulent Laboratory Magnetohydrodynamic Plasma

    Get PDF
    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum

    Temporal And Spatial Turbulent Spectra Of MHD Plasma And An Observation Of Variance Anisotropy

    Get PDF
    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment

    Observation Of Turbulent Intermittency Scaling With Magnetic Helicity In An MHD Plasma Wind Tunnel

    Get PDF
    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown

    Turbulence Analysis Of An Experimental Flux-Rope Plasma

    Get PDF
    We have previously generated elongated Taylor double-helix flux-rope plasmas in the SSX MHD wind tunnel. These plasmas are remarkable in their rapid relaxation (about one Alfven time) and their description by simple analytical Taylor force-free theory despite their high plasma beta and high internal flow speeds. We report on the turbulent features observed in these plasmas including frequency spectra, autocorrelation function, and probability distribution functions of increments. We discuss here the possibility that the turbulence facilitating access to the final state supports coherent structures and intermittency revealed by non-Gaussian signatures in the statistics. Comparisons to a Hall-MHD simulation of the SSX MHD wind tunnel show similarity in several statistical measures

    A Very Strong Enhancer Is Located Upstream of an Immediate Early Gene of Human Cytomegalovirus

    Get PDF
    A strong transcription enhancer was identified in the genomic DNA (235 kb) of human cytomegalovirus (HCMV), a ubiquitous and severe pathogen of the herpesvirus group. Cotransfection of enhancerless SV40 DNA with randomly fragmented HCMV DNA yielded two SV40-HCMV recombinant viruses that had incorporated overlapping segments of HCMV DNA to substitute for the missing SV40 enhancer. Within HCMV, these enhancer sequences are located upstream of the transcription initiation site of the major immediate-early gene, between nucleotides -118 and −524. Deletion studies with the HCMV enhancer, which harbors a variety of repeated sequence motifs, show that different subsets of this enhancer can substitute for the SV40 enhancer. The HCMV enhancer, which seems to have little cell type or species preference, is severalfold more active than the SV40 enhancer. It is the strongest enhancer we have analyzed so far, a property that makes it a useful component of eukaryotic expression vectors

    Multifractal And Monofractal Scaling In A Laboratory Magnetohydrodynamic Turbulence Experiment

    Get PDF
    Both multifractal and monofractal scaling of structure function exponents are observed in the turbulent magnetic fluctuations of the Swarthmore Spheromak Experiment plasma. Structure function and probability distribution function (PDF) analysis exhibits multifractal scaling exponents in low frequency, inertial range fluctuations of the turbulence but monofractal scaling in higher frequency, dissipation range fluctuations. The transition from multifractal to monofractal scaling occurs rapidly suggesting a dissipation mechanism that is insensitive to turbulent structure scale size. Structure functions and PDFs are presented for both temporal and spatial measurements. Variations in the magnetic helicity in the plasma are also shown to modify multifractal scaling characteristics of the inertial range, but do not affect the monofractal scaling of the dissipation range

    The SV40 "enhancer trap"

    Get PDF
    • …
    corecore