204 research outputs found

    Relative effects of urbanisation, deforestation, and agricultural development on mosquito communities

    Get PDF
    Context: Despite numerous studies that showed negative effects of landscape anthropisation on species abundance and diversity, the relative effects of urbanisation, deforestation, and agricultural development as well as the spatial extent at which they act are much less studied. This is particularly the case for mosquitoes, which are the most important arthropods affecting human health. Objectives: We determined the scale of effect of these three landscape anthropisation components on mosquito abundance and diversity. We then assessed which landscape variables had the most effect as well as their independent positive or negative effects. Methods: We used mosquito data collected by Schaffner and Mathis (2013) in 16 sampling sites in Switzerland. We measured forest, urban and agricultural amounts in 485 concentric landscapes (from 150 to 5000 m radius) around each sampling site. We then identified the spatial extent at which each landscape metric best predicted abundance and diversity of mosquito species and compared the effect size of each landscape component on each response variable. Results: In Switzerland, urbanisation and deforestation have a greater influence on mosquito diversity than agricultural development, and do not act at the same scale. Conversely, the scale of effect on mosquito abundance is relatively similar across the different landscape anthropisation components or across mosquito species, except for Culex pipiens. However, the effect size of each landscape component varies according to mosquito species. Conclusion: The scale of management must be selected according to the conservation concern. In addition, a multi-scale approach is recommended for effective mosquito community management. Supplementary information: The online version contains supplementary material available at 10.1007/s10980-023-01634-w [Titel anhand dieser DOI in Citavi-Projekt übernehmen]

    Past, present and future distribution of the yellow fever mosquito Aedes aegypti: The European paradox

    Full text link
    The global distribution of the yellow fever mosquito Aedes aegypti is the subject of considerable attention because of its pivotal role as a biological vector of several high profile disease pathogens including dengue, chikungunya, yellow fever, and Zika viruses. There is also a lot of interest in the projected future species' distribution. However, less effort has been focused on its historical distribution, which has changed substantially over the past 100 years, especially in southern Europe where it was once widespread, but largely disappeared by the middle of the 20th century. The present work utilises all available historical records of the distribution of Ae. aegypti in southern Europe, the Near East within the Mediterranean Basin and North Africa from the late 19th century until the 1960's to construct a spatial distribution model using matching historical climatic and demographic data. The resulting model was then implemented using current climate and demographic data to assess the potential distribution of the vector in the present. The models were rerun with several different assumptions about the thresholds that determine habitat suitability for Ae. aegypti. The historical model matches the historical distributions well. When it is run with current climate values, the predicted present day distribution is somewhat broader than it used to be particularly in north-west France, North Africa and Turkey. Though it is beginning to reappear in the eastern Caucasus, this 'potential' distribution clearly does not match the actual distribution of the species, which suggests some other factors are responsible for its absence. Future distributions based on the historical model also do not match future distributions derived from models based only on present day vector distributions, which predict little or no presence in the Mediterranean Region. At the same time, the vector is widespread in the USA which is predicted to consolidate its range there in future. This contradiction and the implication for possible re-invasion of Europe are discussed

    Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ionization time of flight mass spectrometry

    Get PDF
    Culicoides biting midges are of great importance as vectors of pathogens and elicitors of allergy. As an alternative for the identification of these tiny insects, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated. Protein mass fingerprints were determined for 4-5 field-caught reference (genetically confirmed) individuals of 12 Culicoides species from Switzerland, C. imicola from France, laboratory-reared C. nubeculosus and a non-biting midge. Reproducibility and accuracy of the database was tested in a validation study by analysing 108 mostly field-caught target Culicoides midges and 3 specimens from a non-target species. A reference database of biomarker mass sets containing between 24 and 38 masses for the different species could be established. Automated database-based identification was achieved for 101 of the 108 specimens. The remaining 7 midges required manual full comparison with the reference spectra yielding correct identification for 6 specimens and an ambiguous result for the seventh individual. Specimens of the non-target species did not yield identification. Protein profiling by MALDI-TOF, which is compatible with morphological and genetic identification of specimens, can be used as an alternative, quick and inexpensive tool to accurately identify Culicoides biting midges collected in the fiel

    Vector competence of Aedes japonicus for chikungunya and dengue viruses

    Full text link
    The Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) [=Ochlerotatus japonicus (sensu Reinert et al., 2004) =Hulecoeteomyia japonica (sensu Reinert et al., 2006)], has invaded large parts of North America and has recently started to spread in Central-Western Europe. The species is suspected to act as a bridge vector of West Nile virus but nothing or very little is known about its vector competence for Chikungunya and Dengue viruses. Here, we report on experiments of laboratory infections of Ae. japonicus with CHIKV and DENV, demonstrating that the species has a vector potential for both viruses. Considering the high abundance of the species in urban environments and its ability to feed on human, these results plead to include this species when processing risk assessments for mosquito-borne diseases

    The Phlebotomine sand fly fauna of Switzerland revisited

    Get PDF
    Sand flies (Diptera: Psychodidae, Phlebotominae; Newstead, 1911) are widespread in Europe, being particularly common in the Mediterranean region but rare north of the Alps. Thus, Switzerland is an opportune place to investigate the sand fly fauna on both sides of the Alpine crest, in southern sub‐Mediterranean climate and northern oceanic temperate climate. We reinvestigated the Swiss sand fly fauna with the aim to assess changes in composition, altitudinal distribution, abundance and seasonality. Thirty‐eight sites were investigated with light traps and/or interception sticky traps in 4 years. Ninety and 380 specimens were caught by light traps and sticky traps, respectively, at 15 collecting sites. Four species were identified. Phlebotomus mascittii (Grassi, 1908), Phlebotomus perniciosus (Newstead, 1911) and Sergentomyia minuta (Rondani, 1843) were confirmed in Ticino, and P. mascittii for the first time in neighbouring Grisons. Also, Phlebotomus neglectus (Tonnoir, 1921) is for the first time reported, though at a very low density compared to P. perniciosus at the same site. Its presence in Ticino supports the northward spread observed in Italy. Sand flies were detected north of the Alps at one site only, endorsing a historical report. Overall, the low density of P. perniciosus and very low density of P. neglectus suggest that canine leishmaniosis may not be an important disease risk in Switzerland

    Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions

    Full text link
    We performed a systematic density functional study of the adsorption of copper, silver, and gold adatoms on graphene, especially accounting for van der Waals interactions by the vdW-DF and the PBE+D2 methods. In particular, we analyze the preferred adsorption site (among top, bridge, and hollow positions) together with the corresponding distortion of the graphene sheet and identify diffusion paths. Both vdW schemes show that the coinage metal atoms do bind to the graphene sheet and that in some cases the buckling of the graphene can be significant. The results for silver are at variance with those obtained with GGA, which gives no binding in this case. However, we observe some quantitative differences between the vdW-DF and the PBE+D2 methods. For instance the adsorption energies calculated with the PBE+D2 method are systematically higher than the ones obtained with vdW-DF. Moreover, the equilibrium distances computed with PBE+D2 are shorter than those calculated with the vdW-DF method

    Assessing the role of two populations of Aedes japonicus japonicus for Zika virus transmission under a constant and a fluctuating temperature regime

    Get PDF
    BACKGROUND: Since the huge epidemic of Zika virus (ZIKV) in Brazil in 2015, questions were raised to understand which mosquito species could transmit the virus. Aedes aegypti has been described as the main vector. However, other Aedes species (e.g. Ae. albopictus and Ae. japonicus) proven to be competent for other flaviviruses (e.g. West Nile, dengue and yellow fever), have been described as potential vectors for ZIKV under laboratory conditions. One of these, the Asian bush mosquito, Ae. japonicus, is widely distributed with high abundances in central-western Europe. In the present study, infection, dissemination and transmission rates of ZIKV (Dak84 strain) in two populations of Ae. japonicus from Switzerland (Zürich) and France (Steinbach, Haut-Rhin) were investigated under constant (27 °C) and fluctuating (14-27 °C, mean 23 °C) temperature regimes. RESULTS: The two populations were each able to transmit ZIKV under both temperature regimes. Infectious virus particles were detected in the saliva of females from both populations, regardless of the incubation temperature regime, from 7 days post-exposure to infectious rabbit blood. The highest amount of plaque forming units (PFU) (400/ml) were recorded 14 days post-oral infection in the Swiss population incubated at a constant temperature. No difference in terms of infection, dissemination and transmission rate were found between mosquito populations. Temperature had no effect on infection rate but the fluctuating temperature regime resulted in higher dissemination rates compared to constant temperature, regardless of the population. Finally, transmission efficiency ranged between 7-23% and 7-10% for the constant temperature and 0-10% and 3-27% under fluctuating temperatures for the Swiss and the French populations, respectively. CONCLUSIONS: To the best of our knowledge, this is the first study confirming vector competence for ZIKV of Ae. japonicus originating from Switzerland and France at realistic summer temperatures under laboratory conditions. Considering the continuous spread of this species in the northern part of Europe and its adaptation at cooler temperatures, preventative control measures should be adopted to prevent possible ZIKV epidemics

    West Nile virus in overwintering mosquitoes, central Europe

    Full text link
    Background: West Nile virus (WNV) is currently the most important mosquito-borne pathogen spreading in Europe. Data on overwintering of WNV in mosquitoes are crucial for understanding WNV circulation in Europe; nonetheless, such data were not available so far.Results: A total of 28,287 hibernating mosquitoes [27,872 Culex pipiens, 73 Anopheles maculipennis (sensu lato), and 342 Culiseta annulata], caught in February or March between 2011 and 2017 in a WNV-endemic region of South Moravia, Czech Republic, were screened for the presence of WNV RNA. No WNV positive pools were found from 2011 to 2016, while lineage 2 WNV RNA was detected in three pools of Culex pipens mosquitoes collected in 2017 at two study sites.Conclusions: To the best of our knowledge, this is the first record of WNV RNA in overwintering mosquitoes in Europe. The data support the hypothesis of WNV persistence in mosquitoes throughout the winter season in Europe
    corecore