7,587 research outputs found
Digital control of magnetic bearings supporting a multimass flexible rotor
The characteristics of magnetic bearings used to support a three mass flexible rotor operated at speeds up to 14,000 RPM are discussed. The magnetic components of the bearing are of a type reported in the literature previously, but the earlier analog controls were replaced by digital ones. Analog-to-digital and digital-to-analog converters and digital control software were installed in an AT&T PC. This PC-based digital controller was used to operate one of the magnetic bearings on the test rig. Basic proportional-derivative control was applied to the bearings, and the bearing stiffness and damping characteristics were evaluated. Particular attention is paid to the frequency dependent behavior of the stiffness and damping properties, and comparisons are made between the actual controllers and ideal proportional-derivative control
Attosecond pulse shaping around a Cooper minimum
High harmonic generation (HHG) is used to measure the spectral phase of the
recombination dipole matrix element (RDM) in argon over a broad frequency range
that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well
with predictions based on the scattering phases and amplitudes of the
interfering s- and d-channel contributions to the complementary photoionization
process. The reconstructed attosecond bursts that underlie the HHG process show
that the derivative of the RDM spectral phase, the group delay, does not have a
straight-forward interpretation as an emission time, in contrast to the usual
attochirp group delay. Instead, the rapid RDM phase variation caused by the CM
reshapes the attosecond bursts.Comment: 5 pages, 5 figure
Carrier and Light Trapping in Graded Quantum Well Laser Structures
We investigated the carrier and light trapping in GaInAs/AlGaAs single
quantum well laser structures by means of time resolved photoluminescence and
Raman spectroscopy. The influence of the shape and depth of the confinement
potential and of the cavity geometry was studied by using different AlGaAs/GaAs
short-period superlattices as barriers. Our results show that grading the
optical cavity improves considerably both carrier and light trapping in the
quantum well, and that the trapping efficiency is enhanced by increasing the
graded confining potential.Comment: PDF-format, 15 pages (including 4 figures), Applied Physics Letters
(June 2000
Above threshold ionization by few-cycle spatially inhomogeneous fields
We present theoretical studies of above threshold ionization (ATI) produced
by spatially inhomogeneous fields. This kind of field appears as a result of
the illumination of plasmonic nanostructures and metal nanoparticles with a
short laser pulse. We use the time-dependent Schr\"odinger equation (TDSE) in
reduced dimensions to understand and characterize the ATI features in these
fields. It is demonstrated that the inhomogeneity of the laser electric field
plays an important role in the ATI process and it produces appreciable
modifications to the energy-resolved photoelectron spectra. In fact, our
numerical simulations reveal that high energy electrons can be generated.
Specifically, using a linear approximation for the spatial dependence of the
enhanced plasmonic field and with a near infrared laser with intensities in the
mid- 10^{14} W/cm^{2} range, we show it is possible to drive electrons with
energies in the near-keV regime. Furthermore, we study how the carrier envelope
phase influences the emission of ATI photoelectrons for few-cycle pulses. Our
quantum mechanical calculations are supported by their classical counterparts
Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study
Background: There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model.
Methods: Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer example. Multivariate missing data were imposed on four covariates using four different mechanisms; missing completely at random (MCAR), missing at random (MAR), missing not at random (MNAR) and a combination of all three mechanisms. Five amounts of incomplete cases from 5% to 75% were considered. Complete case analysis (CC), single imputation (SI) and five multiple imputation (MI) techniques available within the R statistical software were investigated: a) data augmentation (DA) approach assuming a multivariate normal distribution, b) DA assuming a general location model, c) regression switching imputation, d) regression switching with predictive mean matching (MICE-PMM) and e) flexible additive imputation models. A Cox proportional hazards model was fitted and appropriate estimates for the regression coefficients and model performance measures were obtained.
Results: Performing a CC analysis produced unbiased regression estimates, but inflated standard errors, which affected the significance of the covariates in the model with 25% or more missingness. Using SI, underestimated the variability; resulting in poor coverage even with 10% missingness. Of the MI approaches, applying MICE-PMM produced, in general, the least biased estimates and better coverage for the incomplete covariates and better model performance for all mechanisms. However, this MI approach still produced biased regression coefficient estimates for the incomplete skewed continuous covariates when 50% or more cases had missing data imposed with a MCAR, MAR or combined mechanism. When the missingness depended on the incomplete covariates, i.e. MNAR, estimates were biased with more than 10% incomplete cases for all MI approaches.
Conclusion: The results from this simulation study suggest that performing MICE-PMM may be the preferred MI approach provided that less than 50% of the cases have missing data and the missing data are not MNAR
Extension of random-phase approximation preserving energy weighted sum rules: an application to a 3-level Lipkin model
A limitation common to all extensions of random-phase approximation including
only particle-hole configurations is that they violate to some extent the
energy weighted sum rules. Considering one such extension, the improved RPA
(IRPA), already used to study the electronic properties of metallic clusters,
we show how it can be generalized in order to eliminate this drawback. This is
achieved by enlarging the configuration space, including also elementary
excitations corresponding to the annihilation of a particle (hole) and the
creation of another particle (hole) on the correlated ground state. The
approach is tested within a solvable 3-level model.Comment: 2 figure
BCS-Bose Crossover in Color Superconductivity
It is shown that the onset of the color superconducting phase occurs in the
BCS-BE crossover region.Comment: 5 pages, LaTeX, references adde
- …