543 research outputs found

    Pulvinar-Cortex Interactions in Vision and Attention

    Get PDF
    The ventro-lateral pulvinar is reciprocally connected with the visual areas of the ventral stream that are important for object recognition. To understand the mechanisms of attentive stimulus processing in this pulvinar-cortex loop, we investigated the interactions between the pulvinar, area V4, and IT cortex in a spatial-attention task. Sensory processing and the influence of attention in the pulvinar appeared to reflect its cortical inputs. However, pulvinar deactivation led to a reduction of attentional effects on firing rates and gamma synchrony in V4, a reduction of sensory-evoked responses and overall gamma coherence within V4, and severe behavioral deficits in the affected portion of the visual field. Conversely, pulvinar deactivation caused an increase in low-frequency cortical oscillations, often associated with inattention or sleep. Thus, cortical interactions with the ventro-lateral pulvinar are necessary for normal attention and sensory processing and for maintaining the cortex in an active state. The pulvinar is often proposed to modulate cortical processing with attention. Zhou et al. find that beyond any role in attention, the pulvinar input to cortex seems necessary to maintain the cortex in an active state.National Institutes of Health (U.S.) (Grant R01 EY017292

    Cell membrane array fabrication and assay technology

    Get PDF
    BACKGROUND: Microarray technology has been used extensively over the past 10 years for assessing gene expression, and has facilitated precise genetic profiling of everything from tumors to small molecule drugs. By contrast, arraying cell membranes in a manner which preserves their ability to mediate biochemical processes has been considerably more difficult. RESULTS: In this article, we describe a novel technology for generating cell membrane microarrays for performing high throughput biology. Our robotically-arrayed supported membranes are physiologically fluid, a critical property which differentiates this technology from other previous membrane systems and makes it useful for studying cellular processes on an industrialized scale. Membrane array elements consist of a solid substrate, above which resides a fluid supported lipid bilayer containing biologically-active molecules of interest. Incorporation of transmembrane proteins into the arrayed membranes enables the study of ligand/receptor binding, as well as interactions with live intact cells. The fluidity of these molecules in the planar lipid bilayer facilitates dimerization and other higher order interactions necessary for biological signaling events. In order to demonstrate the utility of our fluid membrane array technology to ligand/receptor studies, we investigated the multivalent binding of the cholera toxin B-subunit (CTB) to the membrane ganglioside GM(1). We have also displayed a number of bona fide drug targets, including bacterial endotoxin (also referred to as lipopolysaccharide (LPS)) and membrane proteins important in T cell activation. CONCLUSION: We have demonstrated the applicability of our fluid cell membrane array technology to both academic research applications and industrial drug discovery. Our technology facilitates the study of ligand/receptor interactions and cell-cell signaling, providing rich qualitative and quantitative information

    G Protein-Coupled Receptor Kinase Function Is Essential for Chemosensation in C. elegans

    Get PDF
    AbstractG protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca2+ imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Gα subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation

    Holographic phase transitions at finite baryon density

    Get PDF
    We use holographic techniques to study SU(Nc) super Yang-Mills theory coupled to Nf << Nc flavours of fundamental matter at finite temperature and baryon density. We focus on four dimensions, for which the dual description consists of Nf D7-branes in the background of Nc black D3-branes, but our results apply in other dimensions as well. A non-zero chemical potential mu or baryon number density n is introduced via a nonvanishing worldvolume gauge field on the D7-branes. Ref. [1] identified a first order phase transition at zero density associated with `melting' of the mesons. This extends to a line of phase transitions for small n, which terminates at a critical point at finite n. Investigation of the D7-branes' thermodynamics reveals that (d mu / dn)_T <0 in a small region of the phase diagram, indicating an instability. We comment on a possible new phase which may appear in this region.Comment: 33 pages, 22 figure
    corecore