13 research outputs found

    Arp2/3 Complex Regulates Asymmetric Division and Cytokinesis in Mouse Oocytes

    Get PDF
    Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation

    Cnm67p Is a Spacer Protein of the Saccharomyces cerevisiae Spindle Pole Body Outer Plaque

    Get PDF
    In Saccharomyces cerevisiae, the spindle pole body (SPB) is the functional homolog of the mammalian centrosome, responsible for the organization of the tubulin cytoskeleton. Cytoplasmic (astral) microtubules essential for the proper segregation of the nucleus into the daughter cell are attached at the outer plaque on the SPB cytoplasmic face. Previously, it has been shown that Cnm67p is an integral component of this structure; cells deleted for CNM67 are lacking the SPB outer plaque and thus experience severe nuclear migration defects. With the use of partial deletion mutants of CNM67, we show that the N- and C-terminal domains of the protein are important for nuclear migration. The C terminus, not the N terminus, is essential for Cnm67p localization to the SPB. On the other hand, only the N terminus is subject to protein phosphorylation of a yet unknown function. Electron microscopy of SPB serial thin sections reveals that deletion of the N- or C-terminal domains disturbs outer plaque formation, whereas mutations in the central coiled-coil domain of Cnm67p change the distance between the SPB core and the outer plaque. We conclude that Cnm67p is the protein that connects the outer plaque to the central plaque embedded in the nuclear envelope, adjusting the space between them by the length of its coiled-coil

    Supercurrents in Magnesium Diboride/Metal Composite Wire

    Full text link
    We have fabricated a series of ex situ copper sheathed powder-in-tube MgB2 wires with 20% by volume Ag, Pb, In, and Ga metal added to the MgB2 powder. We find the transport critical current of these wires increases significantly with the addition of specific metals to the core filament. In particular, the critical current density (Jc) of the MgB2/Ga(20%) wire is in excess of 5x10^4 A/cm^2 at 10K in self field, nearly 50 times that of the MgB2/Ag(20%) wire. The temperature dependent Jc of all wires is well described as an ensemble of clean S/N/S junctions in which the relevant parameters are the average thickness of the N layer, the critical temperature of the S layer, and a scaling term related to Jc at zero temperature. Eliminating the differences in the filament microstructure as the primary cause of the enhanced Jc, we suggest that Jc is determined by the magnitude of the proximity effect induced superconductivity in the normal metal layer, which is known to be proportional to the electron-electron interaction in N. We present one-dimensional material specific calculations that support this, and zero-field cooled DC magnetic susceptibility data that confirm an increased number of well-connected superconducting grains exist in the composite wires that contain metal additions with large electron-electron interactions and long electron mean free paths.Comment: 36 pages, 10 figures, 3 table
    corecore