10,582 research outputs found
High energy cosmic ray signature of quark nuggets
It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos
Directed force chain networks and stress response in static granular materials
A theory of stress fields in two-dimensional granular materials based on
directed force chain networks is presented. A general equation for the
densities of force chains in different directions is proposed and a complete
solution is obtained for a special case in which chains lie along a discrete
set of directions. The analysis and results demonstrate the necessity of
including nonlinear terms in the equation. A line of nontrivial fixed point
solutions is shown to govern the properties of large systems. In the vicinity
of a generic fixed point, the response to a localized load shows a crossover
from a single, centered peak at intermediate depths to two propagating peaks at
large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur
Random trees between two walls: Exact partition function
We derive the exact partition function for a discrete model of random trees
embedded in a one-dimensional space. These trees have vertices labeled by
integers representing their position in the target space, with the SOS
constraint that adjacent vertices have labels differing by +1 or -1. A
non-trivial partition function is obtained whenever the target space is bounded
by walls. We concentrate on the two cases where the target space is (i) the
half-line bounded by a wall at the origin or (ii) a segment bounded by two
walls at a finite distance. The general solution has a soliton-like structure
involving elliptic functions. We derive the corresponding continuum scaling
limit which takes the remarkable form of the Weierstrass p-function with
constrained periods. These results are used to analyze the probability for an
evolving population spreading in one dimension to attain the boundary of a
given domain with the geometry of the target (i) or (ii). They also translate,
via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main
modifications in Sect. 5-6 and conclusio
PDEs with Compressed Solutions
Sparsity plays a central role in recent developments in signal processing,
linear algebra, statistics, optimization, and other fields. In these
developments, sparsity is promoted through the addition of an norm (or
related quantity) as a constraint or penalty in a variational principle. We
apply this approach to partial differential equations that come from a
variational quantity, either by minimization (to obtain an elliptic PDE) or by
gradient flow (to obtain a parabolic PDE). Also, we show that some PDEs can be
rewritten in an form, such as the divisible sandpile problem and
signum-Gordon. Addition of an term in the variational principle leads to
a modified PDE where a subgradient term appears. It is known that modified PDEs
of this form will often have solutions with compact support, which corresponds
to the discrete solution being sparse. We show that this is advantageous
numerically through the use of efficient algorithms for solving based
problems.Comment: 21 pages, 15 figure
Small-Signal Amplification of Period-Doubling Bifurcations in Smooth Iterated Maps
Various authors have shown that, near the onset of a period-doubling
bifurcation, small perturbations in the control parameter may result in much
larger disturbances in the response of the dynamical system. Such amplification
of small signals can be measured by a gain defined as the magnitude of the
disturbance in the response divided by the perturbation amplitude. In this
paper, the perturbed response is studied using normal forms based on the most
general assumptions of iterated maps. Such an analysis provides a theoretical
footing for previous experimental and numerical observations, such as the
failure of linear analysis and the saturation of the gain. Qualitative as well
as quantitative features of the gain are exhibited using selected models of
cardiac dynamics.Comment: 12 pages, 7 figure
Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop
We consider quadrangulations with a boundary and derive explicit expressions
for the generating functions of these maps with either a marked vertex at a
prescribed distance from the boundary, or two boundary vertices at a prescribed
mutual distance in the map. For large maps, this yields explicit formulas for
the bulk-boundary and boundary-boundary correlators in the various encountered
scaling regimes: a small boundary, a dense boundary and a critical boundary
regime. The critical boundary regime is characterized by a one-parameter family
of scaling functions interpolating between the Brownian map and the Brownian
Continuum Random Tree. We discuss the cases of both generic and self-avoiding
boundaries, which are shown to share the same universal scaling limit. We
finally address the question of the bulk-loop distance statistics in the
context of planar quadrangulations equipped with a self-avoiding loop. Here
again, a new family of scaling functions describing critical loops is
discovered.Comment: 55 pages, 14 figures, final version with minor correction
Distance statistics in large toroidal maps
We compute a number of distance-dependent universal scaling functions
characterizing the distance statistics of large maps of genus one. In
particular, we obtain explicitly the probability distribution for the length of
the shortest non-contractible loop passing via a random point in the map, and
that for the distance between two random points. Our results are derived in the
context of bipartite toroidal quadrangulations, using their coding by
well-labeled 1-trees, which are maps of genus one with a single face and
appropriate integer vertex labels. Within this framework, the distributions
above are simply obtained as scaling limits of appropriate generating functions
for well-labeled 1-trees, all expressible in terms of a small number of basic
scaling functions for well-labeled plane trees.Comment: 24 pages, 9 figures, minor corrections, new added reference
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
- …
