3,331 research outputs found

    Lattice QCD without topology barriers

    Get PDF
    As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.Comment: Plain TeX source, 26 pages, 4 figures include

    Monitoring of lung edema by microwave reflectometry during lung ischemia-reperfusion injury in vivo

    Get PDF
    It is still unclear whether lung edema can be monitored by microwave reflectometry and whether the measured changes in lung dry matter content (DMC) are accompanied by changes in PaO(2) and in pro-to anti-inflammatory cytokine expression (IFN-gamma and IL-10). Right rat lung hili were cross-clamped at 37 degrees C for 0, 60, 90 or 120 min ischemia followed by 120 min reperfusion. After 90 min (DMC: 15.9 +/- 1.4%; PaO(2): 76.7 +/- 18 mm Hg) and 120 min ischemia (DMC: 12.8 +/- 0.6%; PaO(2): 43 +/- 7 mm Hg), a significant decrease in DMC and PaO(2) throughout reperfusion compared to 0 min ischemia (DMC: 19.5 +/- 1.11%; PaO(2): 247 +/- 33 mm Hg; p < 0.05) was observed. DMC and PaO(2) decreased after 60 min ischemia but recovered during reperfusion (DMC: 18.5 +/- 2.4%; PaO(2) : 173 +/- 30 mm Hg). DMC values reflected changes on the physiological and molecular level. In conclusion, lung edema monitoring by microwave reflectometry might become a tool for the thoracic surgeon. Copyright (c) 2006 S. Karger AG, Basel

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    EoS of finite density QCD with Wilson fermions by Multi-Parameter Reweighting and Taylor expansion

    Full text link
    The equation of state (EoS), quark number density and susceptibility at nonzero quark chemical potential μ\mu are studied in lattice QCD simulations with a clover-improved Wilson fermion of 2-flavors and RG-improved gauge action. To access nonzero μ\mu, we employ two methods : a multi-parameter reweighting (MPR) in μ\mu and β\beta and Taylor expansion in μ/T\mu/T. The use of a reduction formula for the Wilson fermion determinant enables to study the reweighting factor in MPR explicitly and heigher-order coefficients in Taylor expansion free from errors of noise method, although calculations are limited to small lattice size. As a consequence, we can study the reliability of the thermodynamical quantities through the consistency of the two methods, each of which has different origin of the application limit. The thermodynamical quantities are obtained from simulations on a 83×48^3\times 4 lattice with an intermediate quark mass(mPS/mV=0.8)m_{\rm PS}/m_{\rm V}=0.8). The MPR and Taylor expansion are consistent for the EoS and number density up to μ/T0.8\mu/T\sim 0.8 and for the number susceptibility up to μ/T0.6\mu/T \sim 0.6. This implies within a given statistics that the overlap problem for the MPR and truncation error for the Taylor expansion method are negligible in these regions. In order to make MPR methods work, the fluctuation of the reweighting factor should be small. We derive the equation of the reweighting line where the fluctuation is small, and show that the equation of the reweighting line is consistent with the fluctuation minimum condition.Comment: 20 pages, 11 figures. Accepted to JHEP. Discussions are added. Figures for Taylor coefficients (Fig. 7) are modifie

    Anomaly and a QCD-like phase diagram with massive bosonic baryons

    Full text link
    We study a strongly coupled Z2Z_2 lattice gauge theory with two flavors of quarks, invariant under an exact SU(2)×SU(2)×UA(1)×UB(1)\mathrm{SU}(2)\times \mathrm{SU}(2) \times \mathrm{U}_A(1) \times \mathrm{U}_B(1) symmetry which is the same as QCD with two flavors of quarks without an anomaly. The model also contains a coupling that can be used to break the UA(1)\mathrm{U}_A(1) symmetry and thus mimic the QCD anomaly. At low temperatures TT and small baryon chemical potential μB\mu_B the model contains massless pions and massive bosonic baryons similar to QCD with an even number of colors. In this work we study the TμBT-\mu_B phase diagram of the model and show that it contains three phases : (1) A chirally broken phase at low TT and μB\mu_B, (2) a chirally symmetric baryon superfluid phase at low TT and high μB\mu_B, and (3) a symmetric phase at high TT. We find that the nature of the finite temperature chiral phase transition and in particular the location of the tricritical point that seperates the first order line from the second order line is affected significantly by the anomaly.Comment: 22 pages, 16 figures, 5 tables, references adde

    Affective state influences retrieval-induced forgetting for integrated knowledge

    Get PDF
    Selectively testing parts of learned materials can impair later memory for nontested materials. Research has shown that such retrieval-induced forgetting occurs for low-integrated materials but may be prevented for high-integrated materials. However, previous research has neglected one factor that is ubiquitous in real-life testing: affective stat

    The impact of negative selection on thymocyte migration in the medulla

    Get PDF
    Developing thymocytes are screened for self-reactivity before they exit the thymus, but how thymocytes scan the medulla for self antigens is unclear. Using two-photon microscopy, we observed that medullary thymocytes migrated rapidly and made frequent, transient contacts with dendritic cells. In the presence of a negative selecting ligand, thymocytes slowed, became confined to areas of approximately 30 mum in diameter and had increased contact with dendritic cells surrounding confinement zones. One third of polyclonal medullary thymocytes also showed confined, slower migration and may correspond to autoreactive thymocytes. Our data suggest that many autoreactive thymocytes do not undergo immediate arrest and death after encountering a negative selecting ligand but instead adopt an altered migration program while remaining in the medullary microenvironment

    The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Get PDF
    Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress1, 2, 3, 4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models5, 6, 7. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink8, 9. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions
    corecore