21 research outputs found

    Effect of adrenergic agonists on phosphoinositide breakdown in rat skeletal muscle preparations

    Get PDF
    AbstractAdrenergic regulation of phosphoinositide breakdown in rat skeletal muscle was investigated in 30-min incubations with 10 mM LiCl. In rat hemidiaphragms, prelabelled with D-myo-[2-3H]inositol, addition of α-agonists (epinephrine, norepinephrine, phenylephrine) induced a 5-8-fold increase of [3H]inositol monophosphate accumulation. This could be prevented by inclusion of α-antagonists (phentolamine, prazosin). β-Agonists and/or β-antagonists had no effect. Similar experiments with isolated flexor digitorum brevis muscle fibers yielded confirmatory results. Functional integrity of β-receptor mediated processes was suggested by the β-agonist-induced increase of glucose 6-phosphate in hemidiaphragms and cAMP in fiber preparations. The results indicate that phosphoinositide breakdown in differentiated rat skeletal muscle is, at least in part, under α-adrenergic control

    Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia

    No full text
    A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6

    Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia

    No full text
    A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6

    Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia

    No full text
    A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6

    Differential Glycomics of Epithelial Membrane Glycoproteins from Urinary Exovesicles Reveals Shifts toward Complex-Type N-Glycosylation in Classical Galactosemia

    No full text
    A variety of genetic variations in the <i>galactose-1-phosphate uridyltransferase </i>(<i>GALT</i>) gene cause profound activity loss of the enzyme and acute toxic effects mediated by accumulating metabolic intermediates of galactose in newborns induced by dietary galactose. However, even on a severely galactose-restricted diet, patients develop serious long-term complications of the CNS and ovaries, which may result from damaging perturbations in cell biology caused by endogenously synthezised galactose. Under galactose stress, the cosubstrate of GALT, galactose-1-phosphate, accumulates and disturbs catabolic and anabolic pathways of the carbohydrate metabolism with potential effects on protein glycosylation and membrane localization of glycoprotein receptors, like the epidermal growth factor receptor. To address this issue in view of a cellular pathomechanism, we performed a differential semiquantitative N-glycomics study of membrane proteins. A suitable noninvasive cellular material derived from epithelial plasma membranes was found in urinary exovesicles and in the shed Tamm–Horsfall protein. By applying matrix-assisted laser ionization mass spectrometry on permethylated, PNGaseF released N-glycans, we demonstrate that GALT deficiency is associated with dramatic shifts from prevalent high-mannose-type glycans found in healthy subjects toward complex-type N-linked glycosylation in patients. These N-glycosylation shifts were observed on exosomal N-glycoproteins but not on the Tamm–Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6

    Biochemical monitoring of pregnancy and breast feeding in five patients with classical galactosaemia - and review of the literature

    No full text
    Pregnancy, delivery, and postpartal metabolic control was monitored biochemically in five patients (22-38 years of age) with clinically, enzymatically, and genotypically established classical galactosaemia and good dietary compliance. Three of the patients performed breast feeding of their newborns. Monitoring parameters were galactose-1-phosphate and galactitol concentrations in erythrocytes and urinary excretion of galactose, galactitol, galactonate, and lactose. During pregnancy, a small but steady increase of renal metabolite excretion rates was observed. After delivery, a moderate transient increase of metabolite concentrations with peak values within the first week post partum occurred, irrespective of breast feeding. Altogether, there was no evidence for clinically or subclinically significant changes of metabolic control during pregnancy, delivery, or lactation. In conclusion, a specific metabolic monitoring is apparently not required in pregnant galactosemic women, and breast feeding of the nongalactosemic offspring can be recommende
    corecore