72 research outputs found
Exploring efficacy and safety of oral Pirfenidone for progressive, non-IPF lung fibrosis (RELIEF) - a randomized, double-blind, placebo-controlled, parallel group, multi-center, phase II trial
Background: Pirfenidone is currently approved in the EU for the treatment of mild to moderate idiopathic pulmonary fibrosis (IPF) and offers a beneficial risk-benefit profile. However, there are several other, progressive fibrotic lung diseases, in which conventional anti-inflammatory therapy is not sufficiently effective and antifibrotic therapies may offer a novel treatment option. Methods/Design: We designed a study protocol for inclusion of patients with progressive fibrotic lung disease despite conventional anti-inflammatory therapy (EudraCT 2014–000861-32). The study population comprises patients with collagen-vascular disease-associated lung fibrosis (CVD-LF), fibrotic non-specific interstitial pneumonia (fNSIP), chronic hypersensitivity pneumonitis (cHP), and asbestos-related lung fibrosis (ALF). Disease progression needs to be proven by slope calculation of at least three Forced Vital Capacity (FVC) values obtained within 6–24 months prior to inclusion, documenting an annualized decline in percent predicted FVC of 5% (absolute) or more despite appropriate conventional therapy. Absolute change in percent predicted FVC from baseline - analyzed using a rank analysis of covariance (ANCOVA) model - will serve as efficacy-related primary study endpoint. Discussion: There is an urgent unmet clinical need for effective therapies for patients with a progressive fibrotic lung disease other than IPF. The current study protocol is unique with respect to selecting patients with different disease entities of lung fibrosis which have, however, essential pathophysiological characteristics in common. Moreover, by selecting patients with evidence of disease progression despite conventional therapy, the protocol ensures that a cohort of interstitial lung disease (ILD) patients with a high unmet medical need is targeted and it may allow a sufficiently high event rate for evaluation of treatment responses. Trial registration: DRKS00009822 (registration date: January 13th 2016)
Interpretation of health-related quality of life outcomes in Parkinson's disease from the EARLYSTIM Study.
The EARLYSTIM Study compared deep brain stimulation (DBS) with best medical treatment (BMT) over 2-years, showing a between-group difference of 8.0 from baseline in favor of DBS in health-related quality of life (HRQoL), measured with the PDQ-39 SI (summary index). This study obtained complementary information about the importance of the change in HRQoL as measured by the PDQ-39, using anchor-based (Patient Global Impression of Change, PGIC) and distribution-based techniques (magnitude of change, effect size, thresholds, distribution of benefit) applied to the EARLYSTIM study data. Anchor-based techniques showed a difference follow-up-baseline for patients who reported "minimal improvement" of -5.8 [-9.9, -1.6] (mean [95%CI]) in the DBS group vs -2.9 [-9.0, 3.1] in the BMT group. As the vast majority (80.8%) of DBS patients reported "much or very much improvement", this difference was explored for the latter group and amounted to -8.7 for the DBS group and -6.5 in the BMT group. Distribution-based techniques that analyzed the relative change and treatment effect size showed a moderate benefit of the DBS on the HRQoL, whereas a slight worsening was observed in the BMT group. The change in the DBS group (-7.8) was higher than the MIC (Minimally Important Change) estimated value (-5.8 by the anchor; -6.3 by triangulation of thresholds), but not in the BMT (0.2 vs. -3.0 to -5.4, respectively). Almost 90% of the patients in the DBS group declared some improvement (58.3% and 56.7% beyond the estimated MIC), which was significantly different from the BMT group whose proportions were 32.0% and 30.3%, respectively. The number needed to treat to improve ≥1 MIC by DBS vs BMT was 3.8. Change in depression, disability and pain influenced the improvement of the DBS group. DBS improved HRQoL in a high proportion of patients to a significant and moderate degree, at 2 years follow-up
Standard requirements for GCP-compliant data management in multinational clinical trials
<p>Abstract</p> <p>Background</p> <p>A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials.</p> <p>Methods</p> <p>International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials.</p> <p>Results</p> <p>The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff.</p> <p>Conclusions</p> <p>The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres.</p
MIRACUM: Medical Informatics in Research and Care in University Medicine : A Large Data Sharing Network to Enhance Translational Research and Medical Care
Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on the German Medical Informatics Initiative. Similar to other large international data sharing networks (e.g. OHDSI, PCORnet, eMerge, RD-Connect) MIRACUM is a consortium of academic and hospital partners as well as one industrial partner in eight German cities which have joined forces to create interoperable data integration centres (DIC) and make data within those DIC available for innovative new IT solutions in patient care and medical research.
Objectives: Sharing data shall be supported by common interoperable tools and services, in order to leverage the power of such data for biomedical discovery and moving towards a learning health system. This paper aims at illustrating the major building blocks and concepts which MIRACUM will apply to achieve this goal.
Governance and Policies: Besides establishing an efficient governance structure within the MIRACUM consortium (based on the steering board, a central administrative office, the general MIRACUM assembly, six working groups and the international scientific advisory board), defining DIC governance rules and data sharing policies, as well as establishing (at each MIRACUM DIC site, but also for MIRACUM in total) use and access committees are major building blocks for the success of such an endeavor.
Architectural Framework and Methodology: The MIRACUM DIC architecture builds on a comprehensive ecosystem of reusable open source tools (MIRACOLIX), which are linkable and interoperable amongst each other, but also with the existing software environment of the MIRACUM hospitals. Efficient data protection measures, considering patient consent, data harmonization and a MIRACUM metadata repository as well as a common data model are major pillars of this framework. The methodological approach for shared data usage relies on a federated querying and analysis concept.
Use Cases: MIRACUM aims at proving the value of their DIC with three use cases: IT support for patient recruitment into clinical trials, the development and routine care implementation of a clinico-molecular predictive knowledge tool, and molecular-guided therapy recommendations in molecular tumor boards.
Results: Based on the MIRACUM DIC release in the nine months conceptual phase first large scale analysis for stroke and colorectal cancer cohorts have been pursued.
Discussion: Beyond all technological challenges successfully applying the MIRACUM tools for the enrichment of our knowledge about diagnostic and therapeutic concepts, thus supporting the concept of a Learning Health System will be crucial for the acceptance and sustainability in the medical community and the MIRACUM university hospitals
The ANTOP study: focal psychodynamic psychotherapy, cognitive-behavioural therapy, and treatment-as-usual in outpatients with anorexia nervosa - a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Anorexia nervosa is a serious eating disorder leading to high morbidity and mortality as a result of both malnutrition and suicide. The seriousness of the disorder requires extensive knowledge of effective treatment options. However, evidence for treatment efficacy in this area is remarkably weak. A recent Cochrane review states that there is an urgent need for large, well-designed treatment studies for patients with anorexia nervosa. The aim of this particular multi-centre study is to evaluate the efficacy of two standardized outpatient treatments for patients with anorexia nervosa: focal psychodynamic (FPT) and cognitive behavioural therapy (CBT). Each therapeutic approach is compared to a "treatment-as-usual" control group.</p> <p>Methods/Design</p> <p>237 patients meeting eligibility criteria are randomly and evenly assigned to the three groups – two intervention groups (CBT and FPT) and one control group. The treatment period for each intervention group is 10 months, consisting of 40 sessions respectively. Body weight, eating disorder related symptoms, and variables of therapeutic alliance are measured during the course of treatment. Psychotherapy sessions are audiotaped for adherence monitoring. The treatment in the control group, both the dosage and type of therapy, is not regulated in the study protocol, but rather reflects the current practice of established outpatient care. The primary outcome measure is the body mass index (BMI) at the end of the treatment (10 months after randomization).</p> <p>Discussion</p> <p>The study design surmounts the disadvantages of previous studies in that it provides a randomized controlled design, a large sample size, adequate inclusion criteria, an adequate treatment protocol, and a clear separation of the treatment conditions in order to avoid contamination. Nevertheless, the study has to deal with difficulties specific to the psychopathology of anorexia nervosa. The treatment protocol allows for dealing with the typically occurring medical complications without dropping patients from the protocol. However, because patients are difficult to recruit and often ambivalent about treatment, a drop-out rate of 30% is assumed for sample size calculation. Due to the ethical problem of denying active treatment to patients with anorexia nervosa, the control group is defined as "treatment-as-usual".</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN72809357</p
Viral load-guided immunosuppression after lung transplantation (VIGILung)—study protocol for a randomized controlled trial
Background!#!Immunosuppression including high-dose calcineurin inhibitors (CNI) is essential after lung transplantation. Dosing is usually guided by therapeutic drug monitoring adjusted to target trough levels of CNIs to keep the balance between over-dose causing severe toxicity and increased risk of infections or under-dose with a risk of graft injury. Adaptation of CNI-based immunosuppression by monitoring of torque teno virus (TTV), a latent nonpathogenic DNA virus, measured in the whole blood in addition to conventional therapeutic drug monitoring may reduce the toxicity of immunosuppression with similar efficacy.!##!Methods/design!#!An open-label, randomized, controlled, parallel-group, multicenter trial in lung transplant recipients will be conducted to investigate the safety and efficacy of immunosuppression guided by TTV monitoring as an add-on to conventional therapeutic drug monitoring. Adult lung transplant recipients 21 to 42 days after transplantation are eligible to participate. Patients (N = 144) will be randomized 1:1 to the experimental intervention (arm 1: immunosuppression guided by TTV monitoring in addition to conventional therapeutic drug monitoring of tacrolimus trough levels) and control intervention (arm 2: conventional therapeutic drug monitoring). Outcomes will be assessed 12 months after randomization with the change in glomerular filtration rate as the primary endpoint. Secondary endpoints will be additional measurements of renal function, allograft function, incidence of acute rejections, incidence of chronic lung allograft dysfunction, graft loss, and infections.!##!Discussion!#!The results of this randomized controlled trial may reduce the toxicity of immunosuppression after lung transplantation while maintaining the efficacy of immunosuppression. Study results are transferable to all other solid organ transplantations.!##!Trial registration!#!ClinicalTrials.gov NCT04198506 . Registered on 12 December 2019
- …