415 research outputs found

    Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics

    Full text link
    We re-examine the problem of the "Loschmidt echo", which measures the sensitivity to perturbation of quantum chaotic dynamics. The overlap squared M(t)M(t) of two wave packets evolving under slightly different Hamiltonians is shown to have the double-exponential initial decay exp(constant×e2λ0t)\propto \exp(-{\rm constant}\times e^{2\lambda_0 t}) in the main part of phase space. The coefficient λ0\lambda_0 is the self-averaging Lyapunov exponent. The average decay Mˉeλ1t\bar{M}\propto e^{-\lambda_1 t} is single exponential with a different coefficient λ1\lambda_1. The volume of phase space that contributes to Mˉ\bar{M} vanishes in the classical limit 0\hbar\to 0 for times less than the Ehrenfest time τE=12λ01ln\tau_E=\frac{1}{2}\lambda_0^{-1}|\ln \hbar|. It is only after the Ehrenfest time that the average decay is representative for a typical initial condition.Comment: 4 pages, 4 figures, [2017: fixed broken postscript figures

    Chaos for Liouville probability densities

    Full text link
    Using the method of symbolic dynamics, we show that a large class of classical chaotic maps exhibit exponential hypersensitivity to perturbation, i.e., a rapid increase with time of the information needed to describe the perturbed time evolution of the Liouville density, the information attaining values that are exponentially larger than the entropy increase that results from averaging over the perturbation. The exponential rate of growth of the ratio of information to entropy is given by the Kolmogorov-Sinai entropy of the map. These findings generalize and extend results obtained for the baker's map [R. Schack and C. M. Caves, Phys. Rev. Lett. 69, 3413 (1992)].Comment: 26 pages in REVTEX, no figures, submitted to Phys. Rev.

    Hypersensitivity to Perturbations in the Quantum Baker's Map

    Get PDF
    We analyze a randomly perturbed quantum version of the baker's transformation, a prototype of an area-conserving chaotic map. By numerically simulating the perturbed evolution, we estimate the information needed to follow a perturbed Hilbert-space vector in time. We find that the Landauer erasure cost associated with this information grows very rapidly and becomes much larger than the maximum statistical entropy given by the logarithm of the dimension of Hilbert space. The quantum baker's map thus displays a hypersensitivity to perturbations that is analogous to behavior found earlier in the classical case. This hypersensitivity characterizes ``quantum chaos'' in a way that is directly relevant to statistical physics.Comment: 8 pages, LATEX, 3 Postscript figures appended as uuencoded fil

    A Quantum-Bayesian Route to Quantum-State Space

    Get PDF
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent's personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation of quantum states induced by a symmetric informationally complete measurement or SIC. In this representation, the Born rule takes the form of a particularly simple modification of the law of total probability. We show how to derive key features of quantum-state space from (i) the requirement that the Born rule arises as a simple modification of the law of total probability and (ii) a limited number of additional assumptions of a strong Bayesian flavor.Comment: 7 pages, 1 figure, to appear in Foundations of Physics; this is a condensation of the argument in arXiv:0906.2187v1 [quant-ph], with special attention paid to making all assumptions explici

    Quantum chaos in open systems: a quantum state diffusion analysis

    Full text link
    Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in the macroscopic limit, even for nonlinear and chaotic systems. We apply the theory to the forced, damped Duffing oscillator, comparing the numerical results of the full and linearized equations, and argue that this can be used to make explicit calculations in the decoherent histories formalism of quantum mechanics.Comment: 18 pages standard LaTeX + 9 figures; extensively trimmed; to appear in J. Phys.

    Optimal Quantum Trajectories for Continuous Measurement

    Get PDF
    We define an ideal optimal quantum measurement as that measurement on the apparatus for which the average algorithmic information in the measurement record is minimized. We apply the definition to a chaotic system subject to continuous (Markov) quantum nondemolition measurements. For optimized measurements the average information in the record is much closer to the von Neumann entropy than in the nonoptimized case, but increases more quickly in the chaotic region than in the regular region

    Conditional evolution in single-atom cavity QED

    Full text link
    We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single resonant electromagnetic field mode inside a cavity. The cavity is resonantly driven and the output undergoes continuous homodyne measurements. We derive an explicit expression for the state of the system conditional on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the steady state. As a byproduct, we derive a general formula for the steady state that had been conjectured before in the strong driving limit.Comment: 15 pages, 1 postscript figure, added discussion of mode

    Unknown Quantum States: The Quantum de Finetti Representation

    Full text link
    We present an elementary proof of the quantum de Finetti representation theorem, a quantum analogue of de Finetti's classical theorem on exchangeable probability assignments. This contrasts with the original proof of Hudson and Moody [Z. Wahrschein. verw. Geb. 33, 343 (1976)], which relies on advanced mathematics and does not share the same potential for generalization. The classical de Finetti theorem provides an operational definition of the concept of an unknown probability in Bayesian probability theory, where probabilities are taken to be degrees of belief instead of objective states of nature. The quantum de Finetti theorem, in a closely analogous fashion, deals with exchangeable density-operator assignments and provides an operational definition of the concept of an ``unknown quantum state'' in quantum-state tomography. This result is especially important for information-based interpretations of quantum mechanics, where quantum states, like probabilities, are taken to be states of knowledge rather than states of nature. We further demonstrate that the theorem fails for real Hilbert spaces and discuss the significance of this point.Comment: 30 pages, 2 figure

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev
    corecore