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Abstract In the quantum-Bayesian approach to quantum foundations, a quantum
state is viewed as an expression of an agent’s personalist Bayesian degrees of belief,
or probabilities, concerning the results of measurements. These probabilities obey the
usual probability rules as required by Dutch-book coherence, but quantum mechanics
imposes additional constraints upon them. In this paper, we explore the question of
deriving the structure of quantum-state space from a set of assumptions in the spirit
of quantum Bayesianism. The starting point is the representation of quantum states
induced by a symmetric informationally complete measurement or SIC. In this rep-
resentation, the Born rule takes the form of a particularly simple modification of the
law of total probability. We show how to derive key features of quantum-state space
from (i) the requirement that the Born rule arises as a simple modification of the law
of total probability and (ii) a limited number of additional assumptions of a strong
Bayesian flavor.

Keywords Quantum foundations · Quantum state space · Quantum Bayesianism ·
Born rule · Bayesian

1 Introduction

In the standard formulation of (finite-dimensional) quantum mechanics, a quantum
state is a density operator, ρ, on a d-dimensional Hilbert space. A measurement with
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m outcomes is described by a POVM, {E1, . . . ,Em}, a collection of positive semi-
definite operators that sum to the identity. The probability, p(i), of the i-th measure-
ment outcome is given by the Born rule,

p(i) = tr(ρEi). (1)

If the POVM {Ei} is informationally complete [1], the state ρ is fully determined
by the outcome probabilities {p(i)}. With respect to some fiducial informationally
complete POVM, the vector of probabilities p(i) is thus an alternative description of
the quantum state. This means that quantum-state space can be viewed as a subset of
the probability simplex.

According to the quantum-Bayesian approach to quantum foundations [1–12], the
probabilities p(i) represent an agent’s Bayesian degrees of belief, or personalist prob-
abilities [13–18]. They are numbers expressing the agent’s uncertainty about which
measurement outcome will occur and acquire an operational meaning through deci-
sion theory [17]. Quantum-Bayesian state assignments are personalist in the sense
that they are functions of the agent alone, not functions of the world external to
the agent [8]. In other words, there are—in principle—potentially as many quan-
tum states for a given quantum system as there are agents who care to take note of
it. Nonetheless, despite not being specified by agent-independent facts, personalist
probability assignments are far from arbitrary. Dutch-book coherence [13, 16, 18] as
a normative principle requires that an agent’s degrees of belief conform to the usual
rules of the probability calculus, and this is a surprisingly powerful constraint when
coupled with the agent’s overall belief system [19].

In addition to the rules required by Dutch-book coherence, the Born rule (1) puts
further constraints on the probabilities used in quantum mechanics. From this arises
two questions which are of central importance for the quantum-Bayesian program.
One question, on which there has been much progress recently [12, 20, 21], is that of
the mathematical structure of the set of probabilities resulting from (1). The second
question concerns the origin of the quantum-mechanical constraints on the agent’s
probabilities, i.e., the origin of the Born rule. The authors’ present view on this ques-
tion is that the Born rule should be seen as an empirical addition to Dutch-book
coherence [12].

What we mean by this is the following. Dutch-book coherence, though a normative
rule, is of a purely logical character [22]. The way Bernardo and Smith [17] put its
significance is this:

Bayesian Statistics offers a rationalist theory of personalistic beliefs in contexts
of uncertainty, with the central aim of characterising how an individual should
act in order to avoid certain kinds of undesirable behavioural inconsistencies.
. . . The goal, in effect, is to establish rules and procedures for individuals con-
cerned with disciplined uncertainty accounting. The theory is not descriptive,
in the sense of claiming to model actual behaviour. Rather, it is prescriptive,
in the sense of saying ‘if you wish to avoid the possibility of these undesirable
consequences you must act in the following way.’

On the other hand, to a quantum Bayesian it is crucial that there is no such thing
as a “right and true” quantum state [8]. But if so, what is one to make of the Born



Found Phys (2011) 41: 345–356 347

rule in (1)? What are these things ρ and Ei that the probabilities are being calculated
from? The meaning of the rule calls for an explanation in our terms. Our solution is
to think of the Born rule in a normative way, rather than as a strict law of nature. It
is something along the lines, but not identical to, Dutch-book coherence: The Born
rule should be viewed as a normative principle for relating one’s various degrees of
belief about the outcomes of various measurements. The idea is that if one does not
make sure his probability assignments are related according to the dictum of the Born
rule, nature is liable to give “undesirable consequences” for his decisions. In contrast
to usual Dutch-book coherence, though, the origin of the normative rule is not of
a purely logical character. It should rather be seen as dependent upon contingent
features of the particular physical world we happen to live in.

To shed further light on the similarities and differences between Dutch book co-
herence and the Born rule, here we renew the question of deriving the structure of
quantum-state space from a set of assumptions formulated and motivated fully in
terms of the probability assignments of a Bayesian agent. In Sect. 3 we show one
way to derive several key features of quantum-state space from the assumption that
the Born rule arises as a simple modification of the law of total probability, comple-
mented by a few further assumptions of a strong Bayesian character. Many details of
the derivation are left out since a full account can be found in [12]. Indeed the role of
the present paper should be viewed as a supplement to the (very long) [12]. Here we
try to be as logically crisp as possible, deleting extended examples and motivations,
and very carefully labeling every assumption.

The set of assumptions in Sect. 3 was inspired by the observation that the mapping
between the Hilbert space and probability simplex formulations of quantum mechan-
ics becomes very simple if the fiducial POVM is a symmetric informationally com-
plete POVM, or SIC [23–28]. In particular, in this representation the Born rule takes
the form of an extremely simple modification of the law of total probability [12],
thus motivating our main assumption in Sect. 3. This motivation will be explained
in Sect. 2, where we prepare the ground for the rest of the paper by reviewing SICs
briefly and showing how to rewrite the Born rule in terms of them.

2 SICs and the Born Rule

Consider a set of d2 one-dimensional projection operators, �i , in d-dimensional
Hilbert space such that

tr�i�j = dδij + 1

d + 1
. (2)

The informationally complete POVM {Ei} defined by Ei = 1
d
�i is called a SIC [24].

SICs have been explicitly proven to exist in dimensions d = 2–15, 19, 24, 35, and 48
(see references in [29]). Furthermore, they have been observed by computational
means, to a numerical precision of 10−38, in dimensions d = 2–67 [29]. For this
paper, we will assume that SICs exist in all dimensions.
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With respect to a SIC, a density operator can be recovered easily from the outcome
probabilities given by the Born rule (1) by using the beautiful formula [24, 26]

ρ =
d2∑

i=1

(
(d + 1)p(i) − 1

d

)
�i. (3)

Using this equation one can show that, in the representation induced by a fiducial
SIC, the set of all quantum states can be characterized very elegantly. According to
one such characterization, a probability vector p(i) is a pure quantum state if and
only if it satisfies the constraints [28]

∑

i

p(i)2 = 2

d(d + 1)
(4)

and
∑

ijk

cijkp(i)p(j)p(k) = d + 7

(d + 1)3
, (5)

where the coefficients cijk are defined by

cijk = Re tr(�i�j�k). (6)

All other quantum states, which means all mixed states, are constructed by taking
convex combinations of the states given by (4) and (5). A key question for the quan-
tum Bayesian program is how to understand and motivate the structure of quantum-
state space expressed in these equations as restrictions on an agent’s personalist prob-
ability assignments.

A strong hint as to where to look for an answer is given by the surprising form the
Born rule takes when written in SIC language. Consider the scenario in Fig. 1, where
one measurement (which we call the “measurement on the ground”) is analyzed in
terms of another measurement (the “measurement in the sky”), and assume for the
time being that the measurement in the sky is a SIC, implying that it has n = d2

outcomes. The probabilities p(i) are thus a representation of the agent’s prior state
assignment. The conditional probabilities r(j |i) are the agent’s probabilities to obtain
outcome j on the ground assuming that the measurement in the sky was actually
performed and resulted in outcome i.

Let us now denote by s(j) the agent’s probabilities for the outcomes of the mea-
surement on the ground in this situation, i.e., when the measurement in the sky was
actually carried out before the measurement on the ground. Dutch-book coherence
requires that the agent computes s(j) from p(i) and r(j |i) by using the law of total
probability,

s(j) =
d2∑

i=1

p(i)r(j |i). (7)

If, however, the measurement in the sky is not performed and remains counterfac-
tual, Dutch-book coherence places no constraints on the agent’s probabilities, denoted
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Fig. 1 This diagram shows the conceptual framework of this paper. A system is imagined to be measurable
in two ways. The measurement on the ground, with outcomes j = 1, . . . ,m, is an arbitrary measurement
that could be performed in the laboratory. The measurement in the sky, with outcomes i = 1, . . . , n, is a
fixed fiducial measurement introduced to analyze the measurement on the ground. The probability distrib-
utions p(i) and r(j |i) represent an agent’s probabilities assuming the measurement in the sky is actually
performed. The probability distribution q(j) represents instead the agent’s probabilities under the assump-
tion that the measurement in the sky is not performed. If the measurement in the sky is a SIC with n = d2

outcomes, q(j) is related to p(i) and r(j |i) by the simple relation (8)

by q(j), for the outcomes on the ground. In this case, it is the quantum formalism
through the Born rule that restricts the agent’s distribution q(j). This follows easily
by setting q(j) = trρFj and r(j |i) = tr�iFj for some general POVM {Fj } with m

outcomes and using (3). One obtains

q(j) =
d2∑

i=1

(
(d + 1)p(i) − 1

d

)
r(j |i). (8)

This is the Born rule q(j) = trρFj expressed in the SIC representation. As in [12]
we stress the central importance of this equation by calling it the Urgleichung. The
similarity with the law of total probability is striking—it is basically the simplest
modification of that law that it could possibly be [30]. To get from the law of total
probability to the Urgleichung, one merely makes the replacement

∑

i

p(i)r(j |i) −→
∑

i

f
(
p(i)

)
r(j |i), (9)
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with f simply an affine mapping, f (x) = (d + 1)x − 1
d

. The functional form of the
Born rule expressed by the Urgleichung will be the pivot for the development in the
next section.

3 Deriving the Structure of Quantum-State Space

In this section, the main section of the paper, we formulate a series of assumptions
from which a number of key features of the structure of quantum-state space can be
derived. As stated previously we omit many of the mechanical details of the proofs
for greater clarity. The omitted details can be found in [12]. The basic situation we
consider is as in Fig. 1. We imagine a fiducial, counterfactual n-outcome measure-
ment “in the sky” in terms of which we analyze an arbitrary m-outcome measurement
“on the ground.” Initially there are no restrictions on the numbers n and m. As before,
p(i), the prior in the sky, represents the probabilities in the sky, and q(j) represents
the probabilities on the ground. We write r(j |i) to represent the conditional probabil-
ity for obtaining j on the ground, given that i was found in the sky. When we want to
suppress components, we will write vectors ‖p〉〉 and ‖q〉〉, and write R for the matrix
with entries r(j |i)—by definition, R is a stochastic matrix.

We start by postulating a generalized Urgleichung where we take the mapping f

in (9) to be a general affine mapping f (x) = αx − β .

Assumption 1 (Generalized Urgleichung) For any measurement on the ground, q(j)

should be calculated according to

q(j) =
n∑

i=1

(
αp(i) − β

)
r(j |i), (10)

where α and β are fixed nonnegative real numbers.

Since the q(j) are probabilities, they satisfy the double inequality 0 ≤ q(j) ≤ 1 or

0 ≤
n∑

i=1

(
αp(i) − β

)
r(j |i) ≤ 1. (11)

We call this double inequality the Urungleichung. It puts immediate restrictions on
the distributions p(i) and r(j |i), i.e., on the vector ‖p〉〉 and the matrix R. For an
agent to accept quantum mechanics it means, at least in part, he commits to these
restrictions on his Bayesian probability assignments. Our ultimate goal—which in
this paper we will achieve only partially—is the precise characterization of these
restrictions in Bayesian terms. We will denote by P0 the set of all priors for the
sky permitted by quantum mechanics, and by R0 the set of all permitted conditional
distributions R. Our next assumption is about the sets P0 and R0. To formulate it, we
need a definition.
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Definition 1 Let P be a set of priors in the sky and let R be a set of stochastic
matrices. We say that P and R are consistent if all pairs (‖p〉〉,R) ∈ P × R obey the
Urungleichung (11). Furthermore, we say P and R are maximal whenever P ′ ⊇ P
and R′ ⊇ R imply P ′ = P and R′ = R for any consistent P ′ and R′.

Assumption 2 (Maximality) The sets P0 and R0 of all valid priors for the sky and
all valid conditionals R are taken to be consistent and maximal.

In other words, we assume that quantum mechanics restricts the set of probabil-
ities available to the agent as little as possible given the universal validity of the
generalized Urgleichung (10).

Unfortunately, Assumption 2 does not fix the sets P0 and R0 uniquely. There are
many consistent and maximal pairs (P , R). The assumptions below constitute one
way to proceed toward the goal of a complete characterization of P0 and R0. There
is little doubt that there exist simpler and more compelling sets of assumptions to
achieve this goal. Finding these is work in progress.

Assumption 3 (Possibility of complete ignorance) The constant vector

‖p〉〉 =
(

1

n
,

1

n
, . . . ,

1

n

)T

(12)

is in the set P0.

This assumption makes sure that the agent can be in a state of complete ignorance
about the outcome of the measurement in the sky.

Assumption 4 (Priors span the simplex) The elements of P span the probability
simplex in n dimensions.

If this assumption were not satisfied, one could use a smaller simplex for all con-
siderations.

Assumption 5 (Principle of Reciprocity) For any R ∈ R0 and any outcome j on the
ground, the vector ‖p〉〉 with components

p(i) = r(j |i)∑
k r(j |k)

(13)

is in the set P0 of valid priors for the sky. Conversely, all valid priors ‖p〉〉 ∈ P0 can
be written in this way.

To motivate this assumption and its name, imagine that both the measurement in
the sky and the measurement on the ground are performed and the agent learns the
outcome j on the ground while remaining ignorant of the outcome in the sky. Imagine
further that his prior in the sky before the measurement is given by the state (12) of
complete ignorance. The expression (13) is then the agent’s posterior probability for
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the outcome i in the sky, given the outcome j on the ground, as computed by Bayes’s
rule. The content of the Principle of Reciprocity is that the set of priors in the sky is
equal to the set of posteriors upon learning the outcome on the ground.

The assumptions so far are very natural and already lead to a number of interesting
consequences [12]. For instance, it follows immediately from Assumption 1 that the
relation

α = nβ + 1 (14)

holds between the three constants of the generalized Urgleichung (10). Assumption 2
implies that the sets P0 and R0 are both convex, and even compact [21], so that
they necessarily have well-defined extreme points. And Assumption 5 implies the
existence of an important class of special priors:

Definition 2 Let the measurement on the ground be identical to the measurement
in the sky. Denote the components of the matrix R by rs(j |i) in this case. By the
Principle of Reciprocity (Assumption 5), the distributions ‖ek〉〉, k = 1, . . . , n, with
components

ek(i) = rs(k|i)∑
l rs(k|l) (15)

are in the set P0. They are called basis states.

Using Assumption 4, one can show that these components take the form

ek(i) = 1

α
(δki + β) (16)

and satisfy the relation

∑

i

ek(i)
2 = 1

α2

(
1 + 2β + nβ2). (17)

However, to pin down the sets P0 and R0 further, and in particular to fix the
parameterized form of the constants n, α, and β—i.e., that n = d2, α = d + 1, and
β = 1

d
—we need two additional postulates. First here is another definition.

Definition 3 A measurement on the ground is said to have the property of in-step
unpredictability (ISU) if a uniform prior in the sky implies a uniform probability as-
signment for the probabilities on the ground, i.e., for an ISU measurement, whenever
‖p〉〉 is the uniform distribution (12), then ‖q〉〉 is given by the uniform distribution
( 1
m

, 1
m

, . . . , 1
m

)T.

The existence of ISU measurements, which will be postulated in Assumption 6
below, means that an agent may be totally ignorant about both the (counterfactual)
outcome in the sky and the outcome on the ground.

Let us now denote by rISU(j |i) the components of the matrix R for a measurement
on the ground with m outcomes, m 	= n, and in-step unpredictability. It can be shown
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[12] that one must have
∑

i

rISU(j |i) = n

m
. (18)

By the Principle of Reciprocity, this ISU measurement gives rise to a class of priors
which we denote by ‖pk〉〉, k = 1, . . . ,m. Their components are given by

pk(i) = m

n
rISU(k|i); (19)

each vector ‖pk〉〉 represents a valid prior in the sky. This leads to our next definition.

Definition 4 We say that a measurement with in-step unpredictability achieves the
ideal of certainty if ‖p〉〉 = ‖pk〉〉 implies that q(j) = δjk , i.e., for such a measurement
and a prior in the sky given by ‖pk〉〉, the agent is certain that the outcome on the
ground will be k.

This is a very specific definition. It is motivated by the following consideration.
Consider a setup with an ISU measurement on the ground, i.e., a measurement with
total ignorance for both ground and sky, and imagine the measurement in the sky is
actually performed. Observing k on the ground while remaining ignorant about the
sky then gives rise to the posterior ‖pk〉〉 for the sky (see the discussion following
Assumption 5). Now go back to the usual situation in which the measurement in
the sky remains counterfactual, and assume the agent’s prior for the sky is ‖pk〉〉. If
the measurement achieves the ideal of certainty, the agent will be certain that the
measurement on the ground results in the very outcome k.

Assumption 6 (Availability of Certainty) For any system, there is a measurement
with in-step unpredictability of some number m0 ≥ 2 of outcomes that (i) achieves
the ideal of certainty and (ii) for which one of the priors ‖pk〉〉 defined in (19) has the
form of a basis distribution (15).

For a measurement of this type, we have that [12]

〈〈pj‖pk〉〉 = 1

α

(m0

n
δjk + β

)
, j, k = 1, . . . ,m0, (20)

where 〈〈·‖·〉〉 denotes the inner product. Using condition (ii) of the above assumption,
it follows that the squared norm 〈〈pk‖pk〉〉 of any of the vectors ‖pk〉〉 is equal to the
squared norm of the basis vectors given by (17). This, together with (14) now implies
the equality

m0

n
α − β = 1 (21)

for any measurement satisfying Assumption 6.
Equation (20) expresses that any two of the vectors ‖pk〉〉 differ by the same angle,

θ , defined by

cos θ = 〈〈p1‖p2〉〉
〈〈p1‖p1〉〉 . (22)



354 Found Phys (2011) 41: 345–356

Using the relations (14) and (21) between our four variables, α, β , n and m0 estab-
lished above, this angle can be seen to equal

cos θ = n − m0

(m0 − 1)2 + n − 1
. (23)

We are now ready to state our last assumption.

Assumption 7 (Many Systems, Universal Angle) The identity of a system is para-
meterized by its pair (n,m0). Nonetheless for all systems, the angle θ between pairs
of priors ‖pk〉〉 for any measurement satisfying Assumption 6 is a universal constant
given by cos θ = 1/2.

The value cos θ = 1/2 is less arbitrary than it may appear at first sight. Taken by
itself, the assumption that θ is universal implies that, for any m0 ≥ 2, there is an
integer n such that the right-hand side of (23) evaluates to the constant cos θ . It is not
hard to show that this is possible only if this constant is of the form

cos θ = q

q + 2
, (24)

where q is a non-negative integer. The universal angle postulated above corresponds
to the choice q = 2.

Every choice for q leads to a different relation between n and m0. For q = 0, we
find n = m0, in which case the Urgleichung turns out to be identical to the classical
law of total probability. For q = 1, we get the relationship n = 1

2m0(m0 + 1) which,
although this fact plays no role in our argument, is characteristic of theories defined
in real Hilbert space [31]. And for q = 2, we obtain

n = m2
0. (25)

Equations (21) and (25) hold for the special measurement postulated in Assump-
tion 6. If we eliminate m0 from these equations we find, with the help of (14), the
relationships

n = (α − 1)2, β = 1√
n
. (26)

These equalities form the main result of this paper. They must hold for any measure-
ment on the ground. If we denote the integer α − 1 by the letter d , we recover the
constants of the original Urgleichung (8).

With the Urgleichung in the form (8) as the starting point and minimal additional
assumptions, a large amount of detailed information about the structure of quantum-
state space can be derived. Details can be found in Ref. [12] and the paper by Appleby,
Ericsson, and Fuchs [21] in this special issue.

4 Summary and Conclusion

Our main postulate, the generalized Urgleichung or Assumption 1, is an addition
to standard Dutch-book coherence. It restricts an agent’s probability assignments in
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a situation involving a counterfactual measurement—the measurement in the sky—
where Dutch-book coherence does not impose any specific constraints. The form
of the generalized Urgleichung is given by a minimal modification of the law of
total probability, which is the law connecting the agent’s probabilities in the case the
measurement in the sky is factualized, i.e., actually carried out. This means that the
key assumption of this paper arises through a formal connection between an agent’s
probabilities in two complementary scenarios, one in which the measurement in the
sky remains counterfactual and one in which it is factualized.

Assumption 2 guarantees that the set of probability assignments available to the
agent is maximal within the constraints set by the generalized Urgleichung, i.e., As-
sumption 2 makes sure that the agent’s probability assignments are not unduly re-
stricted. In a similar spirit, Assumption 3 guarantees that the state of complete igno-
rance is among the agent’s potential priors, and Assumption 4 makes sure that the set
of priors available to the agent is large enough to span the probability simplex.

With Assumption 5, the Principle of Reciprocity, we return to the theme of ex-
ploring connections between the two respective scenarios of a counterfactual and a
factualized measurement in the sky. The Principle of Reciprocity states that the set of
priors for the sky available to the agent should be identical to the set of the agent’s
posteriors for a factualized measurement in the sky. The question of what motivates
the particular relation between probabilities for counterfactual and factualizable mea-
surements expressed in Assumptions 1 and 5 strikes us as a mysterious and important
one.

The numerical relation between the constants α, β , and n, and in particular the
fact that n is a perfect square, follows from the existence of a single special mea-
surement defined in Assumption 6, together with the postulate of a universal angle in
Assumption 7. These last two assumptions, as well as the first five, are given purely in
terms of the personalist probabilities a Bayesian agent may assign to the outcomes of
certain experiments. Nowhere in all this do we mention amplitudes, Hilbert space, or
any other part of the usual apparatus of quantum mechanics. What has been sketched
in this paper constitutes a novel approach to the quantum formalism, providing fresh
insight for the foundations of quantum mechanics. Maybe even more importantly,
the success of this approach provides a compelling case for quantum Bayesianism
[1–12].
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